Sortix 1.1dev ports manual
This manual documents Sortix 1.1dev ports. You can instead view this document in the latest official manual.
BN_DUMP(3) | Library Functions Manual | BN_DUMP(3) |
NAME
bn_mul_words, bn_mul_add_words, bn_sqr_words, bn_div_words, bn_add_words, bn_sub_words, bn_mul_comba4, bn_mul_comba8, bn_sqr_comba4, bn_sqr_comba8, bn_cmp_words, bn_mul_normal, bn_mul_low_normal, bn_mul_recursive, bn_mul_part_recursive, bn_mul_low_recursive, bn_mul_high, bn_sqr_normal, bn_sqr_recursive, bn_expand, bn_wexpand, bn_expand2, bn_fix_top, bn_check_top, bn_print, bn_dump, bn_set_max, bn_set_high, bn_set_low, mul, mul_add, sqr — BIGNUM library internal functionsSYNOPSIS
#include <openssl/bn.h> BN_ULONGbn_mul_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w); BN_ULONG
bn_mul_add_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w); void
bn_sqr_words(BN_ULONG *rp, BN_ULONG *ap, int num); BN_ULONG
bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d); BN_ULONG
bn_add_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp, int num); BN_ULONG
bn_sub_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp, int num); void
bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b); void
bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b); void
bn_sqr_comba4(BN_ULONG *r, BN_ULONG *a); void
bn_sqr_comba8(BN_ULONG *r, BN_ULONG *a); int
bn_cmp_words(BN_ULONG *a, BN_ULONG *b, int n); void
bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb); void
bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n); void
bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, int dna, int dnb, BN_ULONG *tmp); void
bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n, int tna, int tnb, BN_ULONG *tmp); void
bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, BN_ULONG *tmp); void
bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2, BN_ULONG *tmp); void
bn_sqr_normal(BN_ULONG *r, BN_ULONG *a, int n, BN_ULONG *tmp); void
bn_sqr_recursive(BN_ULONG *r, BN_ULONG *a, int n2, BN_ULONG *tmp); void
mul(BN_ULONG r, BN_ULONG a, BN_ULONG w, BN_ULONG c); void
mul_add(BN_ULONG r, BN_ULONG a, BN_ULONG w, BN_ULONG c); void
sqr(BN_ULONG r0, BN_ULONG r1, BN_ULONG a); BIGNUM *
bn_expand(BIGNUM *a, int bits); BIGNUM *
bn_wexpand(BIGNUM *a, int n); BIGNUM *
bn_expand2(BIGNUM *a, int n); void
bn_fix_top(BIGNUM *a); void
bn_check_top(BIGNUM *a); void
bn_print(BIGNUM *a); void
bn_dump(BN_ULONG *d, int n); void
bn_set_max(BIGNUM *a); void
bn_set_high(BIGNUM *r, BIGNUM *a, int n); void
bn_set_low(BIGNUM *r, BIGNUM *a, int n);
DESCRIPTION
This page documents the internal functions used by the OpenSSL BIGNUM implementation. They are described here to facilitate debugging and extending the library. They are not to be used by applications.The BIGNUM structure
typedef struct bignum_st BIGNUM; struct bignum_st { BN_ULONG *d; /* Pointer to an array of 'BN_BITS2' bit chunks. */ int top; /* Index of last used d +1. */ /* The next are internal book keeping for bn_expand. */ int dmax; /* Size of the d array. */ int neg; /* one if the number is negative */ int flags; };
BITS2
) specified in
<openssl/bn.h>.
dmax is the size of the
d array that has been allocated.
top is the number of words being used, so for
a value of 4, bn.d[0]=4 and bn.top=1. neg is
1 if the number is negative. When a BIGNUM is
0, the d field can be
NULL
and
top == 0.
flags is a bit field of flags which are defined
in
<openssl/bn.h>.
The flags begin with BN_FLG_
. The macros
BN_set_flags(b,
n) and
BN_get_flags(b,
n) exist to enable or fetch flag(s)
n from a
BIGNUM structure
b.
Various routines in this library require the use of temporary
BIGNUM variables during their execution.
Since dynamic memory allocation to create
BIGNUMs is rather expensive when used in
conjunction with repeated subroutine calls, the
BN_CTX structure is used. This structure
contains BN_CTX_NUM BIGNUMs; see
BN_CTX_start(3).
Low level arithmetic operations
These functions are implemented in C and for several platforms in assembly language: bn_mul_words(rp, ap, num, w) operates on the num word arrays rp and ap. It computes ap * w, places the result in rp, and returns the high word (carry). bn_mul_add_words(rp, ap, num, w) operates on the num word arrays rp and ap. It computes ap * w + rp, places the result in rp, and returns the high word (carry). bn_sqr_words(rp, ap, num) operates on the num word array ap and the 2*num word array ap. It computes ap * ap word-wise, and places the low and high bytes of the result in rp. bn_div_words(h, l, d) divides the two word number (h, l) by d and returns the result. bn_add_words(rp, ap, bp, num) operates on the num word arrays ap, bp and rp. It computes ap + bp, places the result in rp, and returns the high word (carry). bn_sub_words(rp, ap, bp, num) operates on the num word arrays ap, bp and rp. It computes ap - bp, places the result in rp, and returns the carry (1 if bp ⟩ ap, 0 otherwise). bn_mul_comba4(r, a, b) operates on the 4 word arrays a and b and the 8-word array r. It computes a*b and places the result in r. bn_mul_comba8(r, a, b) operates on the 8-word arrays a and b and the 16-word array r. It computes a*b and places the result in r. bn_sqr_comba4(r, a, b) operates on the 4-word arrays a and b and the 8-word array r. bn_sqr_comba8(r, a, b) operates on the 8-word arrays a and b and the 16 word array r. The following functions are implemented in C: bn_cmp_words(a, b, n) operates on the n word arrays a and b. It returns 1, 0 and -1 if a is greater than, equal and less than b. bn_mul_normal(r, a, na, b, nb) operates on the na word array a, the nb word array b and the na+nb word array r. It computes a*b and places the result in r. bn_mul_low_normal(r, a, b, n) operates on the n word arrays r, a and b. It computes the n low words of a*b and places the result in r. bn_mul_recursive(r, a, b, n2, dna, dnb, t) operates on the word arrays a and b of length n2+dna and n2+dnb (dna and dnb are currently allowed to be 0 or negative) and the 2*n2 word arrays r and t. n2 must be a power of 2. It computes a*b and places the result in r. bn_mul_part_recursive(r, a, b, n, tna, tnb, tmp) operates on the word arrays a and b of length n+tna and n+tnb and the 4*n word arrays r and tmp. bn_mul_low_recursive(r, a, b, n2, tmp) operates on the n2 word arrays r and tmp and the n2/2 word arrays a and b. bn_mul_high(r, a, b, l, n2, tmp) operates on the n2 word arrays r, a, b and l (?) and the 3*n2 word array tmp. BN_mul(3) calls bn_mul_normal(), or an optimized implementation if the factors have the same size: bn_mul_comba8() is used if they are 8 words long, bn_mul_recursive() if they are larger thanBN_MULL_SIZE_NORMAL
and the size is an
exact multiple of the word size, and
bn_mul_part_recursive() for others that are
larger than BN_MULL_SIZE_NORMAL
.
bn_sqr_normal(r,
a, n,
tmp) operates on the
n word array
a and the
2*n word arrays
tmp and r.
The implementations use the following macros which, depending on the
architecture, may use long long C operations
or inline assembler. They are defined in
bn_lcl.h.
mul(r,
a, w,
c) computes
w*a+c
and places the low word of the result in r
and the high word in c.
mul_add(r,
a, w,
c) computes
w*a+r+c
and places the low word of the result in r
and the high word in c.
sqr(r0,
r1, a)
computes a*a
and places the low word of the result in r0
and the high word in r1.
Size changes
bn_expand() ensures that b has enough space for a bits bit number. bn_wexpand() ensures that b has enough space for an n word number. If the number has to be expanded, both macros call bn_expand2(), which allocates a new d array and copies the data. They returnNULL
on error,
b otherwise.
The bn_fix_top() macro reduces
a->top to
point to the most significant non-zero word plus one when
a has shrunk.
Debugging
bn_check_top() verifies that ‘((a)-⟩top ⟩= 0 &&
(a)-⟩top ⟨= (a)-⟩dmax)
’. A violation will
cause the program to abort.
bn_print() prints
a to
stderr
.
bn_dump() prints
n words at d
(in reverse order, i.e. most significant word first) to
stderr
.
bn_set_max() makes
a a static number with a
dmax of its current size. This is used by
bn_set_low() and
bn_set_high() to make
r a read-only
BIGNUM that contains the
n low or high words of
a.
If BN_DEBUG
is not defined,
bn_check_top(),
bn_print(),
bn_dump() and
bn_set_max() are defined as empty macros.
SEE ALSO
BN_new(3)December 10, 2016 | Debian |