Sortix 1.1dev ports manual
This manual documents Sortix 1.1dev ports. You can instead view this document in the latest official manual.
EC_POINT_ADD(3) | Library Functions Manual | EC_POINT_ADD(3) |
NAME
EC_POINT_add, EC_POINT_dbl, EC_POINT_invert, EC_POINT_is_at_infinity, EC_POINT_is_on_curve, EC_POINT_cmp, EC_POINT_make_affine, EC_POINTs_make_affine, EC_POINTs_mul, EC_POINT_mul, EC_GROUP_precompute_mult, EC_GROUP_have_precompute_mult — perform mathematical operations and tests on EC_POINT objectsSYNOPSIS
#include <openssl/ec.h>#include <openssl/bn.h> int
EC_POINT_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx); int
EC_POINT_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, BN_CTX *ctx); int
EC_POINT_invert(const EC_GROUP *group, EC_POINT *a, BN_CTX *ctx); int
EC_POINT_is_at_infinity(const EC_GROUP *group, const EC_POINT *p); int
EC_POINT_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx); int
EC_POINT_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx); int
EC_POINT_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx); int
EC_POINTs_make_affine(const EC_GROUP *group, size_t num, EC_POINT *points[], BN_CTX *ctx); int
EC_POINTs_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *n, size_t num, const EC_POINT *p[], const BIGNUM *m[], BN_CTX *ctx); int
EC_POINT_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *n, const EC_POINT *q, const BIGNUM *m, BN_CTX *ctx); int
EC_GROUP_precompute_mult(EC_GROUP *group, BN_CTX *ctx); int
EC_GROUP_have_precompute_mult(const EC_GROUP *group);
DESCRIPTION
These functions operate on EC_POINT objects created by EC_POINT_new(3). EC_POINT_add() adds the two points a and b and places the result in r. Similarly EC_POINT_dbl() doubles the point a and places the result in r. In both cases it is valid for r to be one of a or b. EC_POINT_invert() calculates the inverse of the supplied point a. The result is placed back in a. The function EC_POINT_is_at_infinity() tests whether the supplied point is at infinity or not. EC_POINT_is_on_curve() tests whether the supplied point is on the curve or not. EC_POINT_cmp() compares the two supplied points and tests whether or not they are equal. The functions EC_POINT_make_affine() and EC_POINTs_make_affine() force the internal representation of the EC_POINTs into the affine coordinate system. In the case of EC_POINTs_make_affine(), the value num provides the number of points in the array points to be forced. EC_POINT_mul() calculates the valuegenerator * n + q * m
and stores the result in r. The value
n may be
NULL
, in which case the result is just
q * m.
generator * n + q[0] * m[0].
NULL
, and the result is just
generator * n.
NULL
.
The function EC_GROUP_precompute_mult() stores
multiples of the generator for faster point multiplication, whilst
EC_GROUP_have_precompute_mult() tests whether
precomputation has already been done. See
EC_GROUP_copy(3)
for information about the generator.
RETURN VALUES
The following functions return 1 on success or 0 on error: EC_POINT_add(), EC_POINT_dbl(), EC_POINT_invert(), EC_POINT_make_affine(), EC_POINTs_make_affine(), EC_POINTs_make_affine(), EC_POINT_mul(), EC_POINTs_mul(), and EC_GROUP_precompute_mult(). EC_POINT_is_at_infinity() returns 1 if the point is at infinity or 0 otherwise. EC_POINT_is_on_curve() returns 1 if the point is on the curve, 0 if not, or -1 on error. EC_POINT_cmp() returns 1 if the points are not equal, 0 if they are, or -1 on error. EC_GROUP_have_precompute_mult() returns 1 if a precomputation has been done or 0 if not.SEE ALSO
d2i_ECPKParameters(3), EC_GFp_simple_method(3), EC_GROUP_copy(3), EC_GROUP_new(3), EC_KEY_new(3), EC_POINT_new(3)HISTORY
EC_POINT_add(), EC_POINT_dbl(), EC_POINT_invert(), EC_POINT_is_at_infinity(), EC_POINT_is_on_curve(), EC_POINT_cmp(), EC_POINT_make_affine(), EC_POINTs_make_affine(), EC_POINTs_mul(), EC_POINT_mul(), and EC_GROUP_precompute_mult() first appeared in OpenSSL 0.9.7 and have been available since OpenBSD 3.2. EC_GROUP_have_precompute_mult() first appeared in OpenSSL 0.9.8 and has been available since OpenBSD 4.5.July 16, 2018 | Debian |