Of Groups and Monads

Source: https://garlandus.co/OfGroupsAndMonads.html! (October 20, 2020)

It's a tall order for a programmer these days to avoid coming into contact with the
term “monad’. Having been introduced into Haskell in the early '90s, it's now more
or less part of the mainstream, if its presence in Java is anything to go by. Look
around and you'll find quite a few descriptions of what monads are ‘like’ — but this
often begs the question: why not just say what they are?

The short answer, of course, is that monads are part of a branch of pure mathe-
matics, and one that few will have studied: category theory. Usually taught at ad-
vanced undergraduate and at graduate level, it's sufficiently abstract to have once
earned the moniker of “general abstract nonsense’. And monads are not the first
item on the menu: in Steve Awodey's “Category Theory”, you won't find them
mentioned before page 253. But arguably you can go some way towards grasping
the notion of a monad from concepts that can be, and once routinely were, taught
to teenagers: groups and homomorphisms. How so? Because a monad as such is
essentially a structure very similar to a group; and because the business end of a
monad is essentially a homomorphism.

Before all that, perhaps first a word on the kind of mathematics a programmer
should reasonably expect to see and use: no one bats an eyelid when terms like
“tuple”, “set” and “vector’ are part of a programming language; and of course the
notion of a function is a fundamental one in computing, just as it is in mathemat-
ics. But how advanced, and how abstract? Edgar Dijkstra once remarked that “so-
called higher order functions... are considered too fancy to even talk about to many
mathematicians, they are functions that have functions for their argument and may
return a function as a value’, yet he met developers in industry who talked about
them “as if they were the most normal thing in the world". Is category theory's level
of abstraction the “new normal” in computing?

The Monadpest

It may be worth considering the experiences in a field whose relationship with
mathematics (including abstract mathematics) has more than a few similarities
with that of computing: physics. Not least because it wasn't initially considered to

https://garlandus.co/OfGroupsAndMonads.html

be a separate discipline: for one, mathematicians seem over the centuries to have
spent an inordinate amount of time precisely calculating the orbit of planets — in-
cluding Gauss with Ceres, and as late as Laplace with his “Celestial Mechanics”.
Newton exemplifies a time when mathematics and physics were more or less indis-
tinguishable: Galileo may have said that “the laws of nature are written in the lan-
guage of mathematics”, but it was Newton who showed that more often than not
the dialect was calculus, and that the laws were relations between derivatives.
Physicists don't balk at being presented with a differential equation — it's their dis-
cipline’s bread and butter. But abstract algebra can be another matter.

In fact one of the first major encounters between physics and abstract algebra
didn’t go smoothly. Group theory, which turned out in the 1920s to have important
applications to the newly developing quantum mechanics, raised the hackles of a
number of physicists, including Pauli who famously referred to the “Gruppenpest” —
the plague of the groups. Over time, physicists stopped grumbling and made their
peace with group theory. Will the same happen with programmers and the “Monad-
pest’? Maybe so. Although it must be said that monads are a more advanced con-
cept.

If anything the relationship between computing and mathematics is a more “foun-
dational” one. You can trace the origins of computing back to certain programma-
ble machines — perhaps Jacquard’s loom, or the work of Charles Babbage and Ada
Lovelace; but in terms of theoretical underpinnings, which would apply to any such
machine, it's hard to argue with the importance of two papers of 1936: Alonzo
Church’'s “An Unsolvable Problem of Elementary Number Theory” and Alan Tur-
ing's “On Computable Numbers, With an Application to the Entscheidungsprob-
lem”. Church and Turing were both mathematical logicians, and these papers both
answered the same fundamental question in logic (the “decision problem™) posed by
David Hilbert, one of the leading mathematicians of the nineteenth — yes nine-
teenth — and twentieth centuries. The notion of “computability” crucial to answer-
ing this question was at this time a strictly mathematical one, even though it was
clear that there could — would — be a link to a mechanical or electronic device.
Church and Turing had given very different answers, but they were shown to be
equivalent (as was another given by Godel). It's the vast generality of the questions
that can be asked in computing — not least “what is computable” — that dictate the
kind of mathematics that are involved. Perhaps we should not be surprised that
here we are asked not to remember some obscure statistical measure on the fringes
of mathematics, but to consider questions of structure and abstraction at its core,
ones that are addressed by abstract algebra and category theory.

So it would seem reasonable to wade into abstract algebra — at the shallow end.
Perhaps we should note in passing that with “plain old” algebra we are already at a
certain level of abstraction: the use of symbols to represent numeric variables,
along with addition, equality and the like took centuries to settle into its current
form; and even though you can find Diophantus in ancient Greece using v for the
unknown, A~ for its square and K~ for its cube, you won't find the now traditional
notation of 2? representing a square until Descartes and Gauss. Rather Babylonian
inscriptions find echoes in Cardano’s 16th century instructions to add “the square
of one-half the constant of the equation; and take the square root of the whole".
Abstract algebra would begin to unmoor these symbols from their arithmetical
roots, and in particular letters would come to represent not numbers but arbitrary
mathematical objects, whatever these might be. This also took the name of “mod-
ern algebra”, and is sometimes still referred to that way today — although nearly
two centuries later this is a truly loose interpretation of the word “modern”.

What is the shallow end of abstract algebra? The group. Something sufficiently
simple that Grothendieck once spoke of its introduction, and of the invention of
the symbol for zero, as “childish steps’ without which mathematics had more or
less stagnated “for a thousand years or two". Despite its abstraction, the fundamen-
tal simplicity and compactness of a the concept of a group once led it to be taught
at secondary school. The Space Race had a role in kickstarting a period of mathe-
matical teaching in various countries with an emphasis on relative “modernity”
known as “New Math". In the US this involved teaching the basics of sets in pri-
mary school, and sometimes later moving on to abstract algebra. You can for in-
stance find an 11th-grade textbook of the era describing “the very important struc-
tures with one operation called groups’, continuing: “They appear throughout
mathematics in many different guises. The study of groups as such is an instance
of algebra at its purest.”

Down with Euclid!

But it was in France that this kind of teaching was most systematic, and directed
at the youngest audience. There the notion of a group was presented in the equiva-
lent of the US 8th grade (4éme). The particularities of the French system — with
its cutoffs for birthdates by calendar year and not school year — in fact mean that
the phrase “taught to teenagers’ is not entirely accurate: in the early 70s, a rigor-
ous presentation of groups was in effect deemed suitable for twelve-year-olds. Of
course whether twelve-year-olds typically agreed with this assessment is another

matter... There were a few reasons for this enthusiastic, yet austere approach, the
main one being the influence of Bourbaki, as a group of prominent, mainly French
mathematicians came to be known. They published under this pen name for
decades (amusing themselves by devising a fictitious backstory for Nicolas Bour-
baki), and alongside their many tomes which attempted to present a coherent vi-
sion of the then state of mathematics, had a sizable influence on French mathe-
matical teaching at all levels. (They are also responsible for the concept of a
monad, inasmuch as Roger Godement was a member of Bourbaki when his “stan-
dard construction” appeared in 1958.) Among their founding members was Jean
Dieudonné, whose onetime cry of “Down with triangles! Down with Euclid!" sig-
naled the urge to move from teaching “fossilized geometry” to covering the more
abstract mathematics that had come to the fore in the previous century.

One reason the concept of a group may have seemed a natural fit for secondary or
even middle school was that its discoverer was himself a teenager — a certain
Evariste Galois, whose tempestuous life, during a time of political turmoil that in-
cluded a second French revolution in 1830, was cut short by a duel at the age of
twenty. He was led to it by investigations into polynomial equations, a subject that
had intrigued mathematicians for centuries, and one variant of which — Diophan-
tine equations, for which only integer solutions are sought — would yet play a role
in the development of notions behind computing, in the form of a “decision prob-
lem” posed by Hilbert. Hilbert who would note how Galois’ work exemplified math-
ematical “independence”: while “surely the first and oldest problems in every branch
of mathematics stem from experience and are suggested by the world of external
phenomena”, eventually “it evolves from itself alone new and fruitful problems, and
appears then itself as the real questioner. Thus arose... Galois's theory of equa-
tions... indeed almost all the nicer questions of modern arithmetic and function
theory arise in this way.” Specifically Galois was looking at quintic equations, i.e.
polynomials of the fifth degree. There were well-known “solutions in radicals”,
which involved simple arithmetic operations and nth roots, for equations of lesser
degree, including of course the general solution to a quadratic equation that most
are familiar with. But the lack of progress in finding a similar solution for quintics
had persuaded many mathematicians for a while that none existed. Then Ruffini
had (almost) proved it, and Abel had proved it beyond any doubt. Galois knew all
this, but he wanted to know why.

It's indeed striking that a mathematical notion so fundamental and with as many
links to the physical world should have been unearthed by an “internal investiga-
tion". No apples falling from trees were involved. It wouldn’t be the last in this vein

either: when Eilenberg and Mac Lane started category theory, they were struck by
the similarity of particular results between two very different branches of mathe-
matics, and decided to get to the bottom of it.

Cardboard squares and rubber bands

There are many ways — finally — to present the notion of a group, with varying de-
grees of appeal to physical intuition. The French middle-schoolers presented with a
Bourbaki-style textbook were given none at all — a perfunctory remark that powers
of ten, when multiplied, yield other powers of ten, was all the “motivation” they
were going to get. This was far removed from Mac Lane's approach, since in “A
Survey of Modern Algebra” with Birkhoff he stresses that “the abstract concepts all
arise from the analysis of concrete situations’. Accordingly, the idea of symmetry
that finds its expression in a group was illustrated by an appeal to “imagine a card-
board square laid on a plane” and later “a rubber band held in a straight line". On
the assumption that programmers are less accustomed to arguments about card-
board squares and rubber bands, let's go with a different approach, much more
common in software: the idea of a pattern. Naturally it's a key notion in mathe-
matics as well: William Thurston once said that the closest he could come to a def-
inition of mathematics itself was “the theory of formal patterns”.

The simple laws that define a group effectively describe an algebraic pattern. One
difference with programming is that there you might say that something “matches
the group pattern”. Mathematicians, who tend to cut to the chase, say that any-
thing matching that pattern /s a group.

Thus a group is a set G and an operation e which match a certain pattern, that of
the so-called group axioms. Here we can roughly follow wikipedia. Whereas the
Bourbaki-influenced school text rigorously defined intermediate concepts such as
relation, we can use a shortcut familiar to programmers: e is a binary operation on
G, i.e. combines any two elements of G to produce a third, still in G (this takes
care of the first axiom of closure).

- e is associative (for all a, b and cin G, (aeb)ec=aqae (bec))
- a special element of G, known as the identity element, is such that the following
equations hold for all ain G: eea=aee=a

- every element a of G has an inverse a™!, such that aea ™' =alea=c¢

And that's it... enough to define a fundamental structure that, as noted earlier,
“appear[s] throughout mathematics in many different guises’. It's a kind of self-
contained world with a particularly well-behaved way of combining elements. A
simple example is (Z,+), the group of integers under addition: you can add any two
integers to produce a third, addition being associative; and the “inverse”’ of any in-
teger z is —z, such that z added to —z yields the “identity element” zero. The key
to the group’s simplicity is the “structural” axiom of associativity: when combining
multiple elements, this takes what programmers might think of as a tree structure
and flattens it out into a simple chain: no parentheses are needed. You won't find a
group “under subtraction”, because subtraction isn't associative: (7 —4) — 3 is not
the same as 7 — (4 — 3). Associativity is often mentioned in the same breath as
commutativity, an even simpler property where operands can be exchanged:
aeb=>bea that holds for any a,b. But groups are not necessarily commutative, and
when they are, they're known as abelian (a nod to Abel).

The abstract nature of the group can be seen in the variety between simple exam-
ples. The one given above is of an infinite set of numbers (Z) under addition, but
you could also have a finite set of complex numbers (e.g. the 5th roots of unity)
under multiplication, or something else entirely. In fact the most common groups
are not sets of numbers combined arithmetically but sets of functions combined in
the most straightforward way: composition. It's here that we can see that heralded
link with symmetry, and that we get closer to both category theory and program-
ming. And here Mac Lane and Birkhoff's cardboard square example isn't so bad
after all: imagining such a square “laid on a plane with fixed axes, so that the cen-
ter of the square falls on the origin of the coordinates, and one side is horizontal”,
the symmetry is illustrated through movements by which the square is “carried into
itself”: namely rotations (of 0, 90, 180 and 270 degrees) and reflections (about the
horizontal, vertical and both diagonal axes). An “algebra of symmetries” follows
from being able to “multiply two motions by performing them in succession”, with
the same net effect as one of the basic motions.

In viewing groups (and later, categories) in terms of algebraic patterns, how far re-
moved are we from the kinds of patterns we might typically see in programming?
There also the usefulness of finding patterns is widely acknowledged, both because
it saves work and because it usually points to something meaningful. Could you
then bypass abstract mathematics entirely and view things like monads strictly in
terms of software patterns? Perhaps. But in terms of usefulness there are patterns,
and then there are patterns. On a hot clear day you might want to know where in
a park was likely to be shady: if you limited yourself to observing the changing

shadows of trees, buildings or what have you on the ground you could certainly find
patterns emerging; but the more fundamental one is elsewhere: the movement of
the sun in the sky — and it's a far simpler one to boot. Groups can describe in sim-
ple terms the notion of pattern itself, in its common visual sense of stripes, polka
dots, etc. The basic patterns of category theory are so widespread that they give a
way to relate seemingly unconnected domains throughout mathematics. With
groups and categories, you might find yourself contemplating the deep structure to
be found within nature — and maybe even agree with the observation “in the end,
there's nothing but symmetry”. With the decorator pattern? Not so much.

Not equal, but the same

Having defined the self-contained, well-behaved structures known as groups, they
become “mathematical objects’ along with numbers, vectors, functions, you name
it. You can now treat them as objects, and in particular look at how they relate to
each other. This is where the term “homomorphism” comes in — yet almost in the
same breath we should mention the very similar term “isomorphism”. They have vir-
tually the same Greek etymology (“same shape” versus “identical shape”), with an
isomorphism being the “ideal” version of a homomorphism. In general the most
basic relationship between simple mathematical objects such as numbers is equality
— even though it can sometimes be surprisingly hard to define. The most funda-
mental relationship between groups is however something deeper: not that they are
equal, but they are structurally the same, i.e. isomorphic. It's a fundamental con-
cept in mathematics, and gives the lie to the often widespread impression that
mathematics aims to complicate things: the aim here is to simplify, sometimes dra-
matically, and to show that two structures with possibly very different appearances
are, for all intents and purposes, the same. If you paint a car bright yellow you'll
have changed its appearance (probably), but you won't have changed anything fun-
damental about the car. That two groups are isomorphic tells us that the only dif-
ference is the paint job, and it's of no consequence.

For groups to be isomorphic we need to have an isomorphism between them, which
is a bijection (one-to-one mapping) F between the two underlying sets with one
simple property: if (G1,e) and (G2, *) are the groups, then for any a,b in G1,

F(aeb) = F(a)x F(b)
This minimalist structural axiom, recalling somewhat the associativity axiom of the

group, is enough to guarantee that the structure of (G1,e) is faithfully replicated
by (G2,). For instance the identity element el in G1 is mapped to the identity ele-

ment e2 in G2 such that e2 = F(el), and from there you can easily show that e2
behaves as the identity element in G2, i.e. does nothing. As an example of an iso-
morphism, consider (R, +), i.e. the real numbers under addition, and (R™, x), i.e.
the strictly positive real numbers under multiplication. The first group is very simi-
lar to the integers under addition that we saw earlier. In the second group the iden-
tity element is now the real number 1, since 1 is the “do nothing” element for mul-
tiplication. In this case the exponential function is an isomorphism, since it's a bi-
jection between R and R™* such that e(a + b) = ea x eb. Through exponentiation, a
structure involving addition has morphed into an entirely equivalent one involving
multiplication (which you could revert using a logarithm). In passing this example
suggests some kind of fundamental symmetric relationship between sum and prod-
uct, one that category theory will state very clearly and simply.

This kind of deep structural equivalence is not restricted to groups of numbers
under arithmetic operations. In computing a striking illustration is the so-called
Curry-Howard isomorphism, a full equivalence between seemingly vastly different
areas that took decades to spot: mathematical proofs and computer programs.

With a homomorphism we're no longer in the “ideal” territory of the isomorphism,
because a homomorphism is not guaranteed to be a bijection, in which case it
can't be inverted. For instance, instead of just the identity element el, several ele-
ments of G1 (the so-called “kernel’) could map to the identity element e2 of G2.
But crucially the same basic structural axiom holds: F(a e b) = F(a) * F(b) for any
a,b in G1. This guarantees that a homomorphism broadly preserves the group'’s
structure: you may not be able to revert from G2 to G1, but you still know that it
behaves in much the same way.

A standard construction

The connection with monads? A monad provides the means for the “standard con-
struction”, as Godement originally called it, of... a homomorphism. A particular ho-
momorphism, and one not between groups but between categories (called a func-
tor), but which satisfies the exact same axiom. We're still looking for such a func-
tion F, not necessarily invertible as is an isomorphism, but one whose fundamental
characteristic is that it preserves structure. And it turns out that the monad itself,
this means of constructing the end product of the homomorphism, can be viewed
as something which is nearly a group: a monoid (the difference being that in a
monoid elements don't necessarily have inverses, not unlike the distinction between
homomorphism and isomorphism).

In computing we'll be looking at structures — not quite groups, but similar — made
up of functions that are combined straightforwardly through composition. Homo-
morphisms between such structures can map functions to new ones in a great vari-
ety of ways, but always such that overall behavior is preserved: the new functions
interact with each other in much the same fashion as the original ones. Another
way of saying that a homomorphism preserves structure is that it “doesn’t interfere”
with the original structure. You can begin to get a sense of why in software mon-
ads are often associated with “extending” a type: one route to producing new func-
tions with the same interactions as the old is to embed them in something larger,
to add unrelated behavior in a “new dimension”. If your original functions yielded
integers, the ones produced by homomorphism might yield pairs of integers, with
the original value “embedded” as one of the values of the pair. But there are other
types of homomorphism, for example ones which instead of adding dimensions are
“forgetful” of them.

Groups — or at least the related “semigroups’ — even make a direct appearance in
practical computing, as embodied by that decades-old poster child for efficiency,
C++: Alexander Stepanov ‘“realized that the ability to add numbers in parallel de-
pends on the fact that addition is associative... In other words... that a parallel re-
duction algorithm is associated with a semigroup structure type. That is the funda-
mental point: algorithms are defined on algebraic structures.” The result was the
Standard Template Library (STL). For Bjarne Stroustrup this quest for "‘the most
general and most efficient code’ based on a rigorous mathematical foundation” re-
sulted in “unsurpassed flexibility and — surprisingly — performance.”

A generalized group

Nearly two centuries after Galois’ work, has group theory run its course, or fallen
out of favor? Hardly. Where the Erlangen Program led by Felix Klein in the late
nineteenth century had sought to characterize various geometries — once Euclidean
geometry had been knocked off its pedestal as the one true geometry — notably in
terms of transformation groups, the modern Langlands Program is an even more
vast group-related undertaking: Peter Sarnak calls it “one of the great insights into
twentieth-century mathematics... a beautiful synthesis of the theory of numbers
and symmetry — the theory of groups — specifically Lie groups”. Make that twenty-
first-century mathematics as well, as confirmed by the 2018 Abel Prize awarded to
Robert Langlands for his “visionary program connecting representation theory to
number theory.” Lie groups essentially describe continuous symmetry, of the sort

given by rotations through any angle, as opposed to the discrete ones we consid-
ered earlier which simply permuted a handful of vertices. So-called representations
of groups in a sense make them more concrete, by finding equivalent (isomorphic)
groups that are in effect matrices under multiplication. It's the approach Weyl had
used to apply group theory to quantum mechanics. And it played an important role
in finally proving Fermat's Last Theorem, more than 350 years after it was conjec-
tured, as evidenced by the title of the 1993 lecture in which Andrew Wiles an-
nounced his proof: “Modular Forms, Elliptic Curves and Galois Representations”. A
cursory look at the descriptions of the research by the 2018 Fields medalists again
yields references to “Galois Representations’ and “representation theory”. If Mac
Lane could muse in the 1950s that “group theory was due for a revival”, it's hard to
think anyone would do so today.

And category theory? As Pierre Cartier and no doubt many others have pointed
out, it “didn’t appear in a vacuum”. Group theory was an essential part of the
backdrop to its development. Eilenberg & Mac Lane's seminal 1942 paper (pub-
lished in 1945), “General Theory of Natural Equivalences”, may start off with an ex-
ample involving vector spaces, but groups and homomorphisms are the examples
mentioned within the definition of a category itself, helping the reader make a new
abstract theory more “concrete’. Their next paper was called “Natural Isomor-
phisms in Group Theory”. And there's also the small matter that a category is... a
generalized group.

So groups and homomorphisms are fundamental, and by no means outdated con-
cepts, teachable at an early age, which can elicit a ring of familiarity when ap-
proaching a very abstract subject for the first time. At this point you might reason-
ably be tempted to ask: why aren't they systematically taught first? Now there's a
question... To take an example from another area of mathematics: when Hilbert, in
Mac Lane's words, “extracted the formulation of the first order predicate calculus
from the pedantic morass of ‘Principia Mathematica'”, Russell and Whitehead's
treatise on logic, he presented the results in a gradual, step-by-step style. His text-
book proceeds from simple predicate logic to first-order logic (with quantifiers ex-
pressing the notions “some” and “all”) and finally higher-order logic, which is the
sort he thought was ultimately necessary. By contrast, explaining category theory
without the stepping stone of groups feels “second-order” from the get-go.

You can't help but wonder whether this approach was originally influenced by ex-
ternal considerations, and then became habit. With the caveat that “most practic-
ing mathematicians see no need for the foundations of their subject” (Lam-

bek/Scott), it seems worth mentioning that set theory and category theory can be
viewed as competing foundations for all of mathematics. Even if you don't agree
with Pythagoras that “everything is mathematics’, those are some bragging rights.
Set theory expressed in first-order logic is the traditional choice — you can define
natural numbers as nested sets of the empty set, and functions as sets of ordered
pairs, pairs which in turn are defined in terms of sets... you get the picture. But
there's a case to be made for functions being more appropriate building blocks
than sets, and category theory a better foundation than set theory. Awodey adds
type theory to the list of contenders, and while admitting that all three are “mathe-
matically equivalent” and have their own advantages and shortcomings, generally
seems to feel that category theory has a “structural approach” that is “more stable,
more robust, [and] more invariant” than the others. Mac Lane had once conceded
that “there is as yet no simple and adequate way of conceptually organizing all of
Mathematics”. On a less diplomatic day he presented a lecture with the title “Set
theory is obsolete”.

Non-mathematical considerations had certainly played a role in what remains a sig-
nificant missed opportunity, and one which surely slowed down the general accep-
tance of category theory: its absence from Bourbaki's tomes. This despite Bour-
baki's overriding emphasis on the idea of structure, in line with Dieudonné’s obser-
vation that “since about 1840 the study of specific mathematical objects has been
replaced more and more by the study of mathematical structures’. Mac Lane ob-
served that his onetime attempts to win over its members were hampered by a
“command of the French language... inadequate to the task of persuasion”. He does
not mince his words about the result: “The official Bourbaki discussion of mathe-
matical structure... is perhaps the ugliest piece of writing to have come from Bour-
baki's pen. Nobody else makes much use of this, and Bourbaki... was too conserva-
tive to recognize other better descriptions of structure when they arose.” He may
also have mentioned the “cold, hard fact” that category theory was not invented in
France. How did Bourbaki miss the boat on this one? While it's not inconceivable
that a “made in France” label would have led to a warmer reception, Bourbaki's
strongest influence was after all (arguably) that of David Hilbert. As Cartier tells it,
most members were not only familiar with category theory but used it regularly, to
say nothing of Eilenberg who had been a member since 1950. Grothendieck's sug-
gestion that they rework the existing tomes to incorporate category theory seems
to have foundered on the objections of a couple of members, particularly
Dieudonné whose role as industrious scribe gave his opinions weight. As a conse-
quence, adoption in France was slower than it would have been. Fast-forward a few
decades though and the name OCaml derives from the “Categorical Abstract Ma-

chine”. And in a move which you might suppose will be followed elsewhere, the
term “group homomorphism™ has been supplanted there by “group morphism”, a
clear nod to category theory. Whatever the historical missteps, there is no reason at
all to somehow oppose groups and categories, complementary and pivotal abstrac-
tions.

That said... there's a limit to the amount of insight you're going to get about mon-
ads from the notions of group and homomorphism alone. There might after all be a
case for picking up a few rudiments of category theory. What the heck.

*

The right generality

The one characteristic of category theory familiar to most is its high level of ab-
straction. Tom Leinster calls it “a bird’s eye view of mathematics”. It jibes with a
certain view of mathematicians, who, as Feynman put it somewhat schematically in
a lecture, “like to make their reasoning as general as possible. If | say to them, ‘I
want to talk about ordinary three dimensional space’, they say ‘If you have a space
of n dimensions, then here are the theorems’. ‘But | only want the case 3', "Well,
substitute n=3."!" This contrasts with the physicist, who “is always interested in
the special case” and “never interested in the general case.” But Mac Lane would
not have recognized such a characterization: for him, “good general theory does not
search for the maximum generality, but for the right generality.” When does added
generality yield diminishing returns? He cites a technical example from Bourbaki: a
clumsy universal construction that accomodated “the ideas of multilinear algebra
that were important to French Mathematical traditions”. We could also cite a more
modern example: the mustard watch. Proposed by an alter ego of Jean-Yves Gi-
rard, this “generalisation of the concepts of watch and of mustard pot” does lead to
some interesting theorems (“a mustard watch with no mustard in it is at least as
precise as an ordinary one”) and asks the obvious questions (“what is the point of
knowing [the] time if you cannot get mustard?’ — indeed), but it's not quite the
right generality. Category theory is the right generality in terms of being applicable
across mathematics; the problem with learning it is in being presented with that
generality right away.

That a field with as wide as scope as category theory should have its roots in the
coming together of separate branches of mathematics is perhaps not surprising.
One of them of course was abstract algebra. Groups had now been complemented

notably with rings and fields, where another operation is added — typically the two
operations are now thought of as generalizing addition and multiplication. Unlike
rings, fields mandate the existence of inverses for multiplication, i.e. division, ex-
cept for zero — and this stipulation of such a special case, built into the very defini-
tion of a field, is often where things get interesting. You could stick to integers (Z)
for a ring, but for a field would have to move on to something like rational (Q) or
real (R) numbers. The development of the theory of these structures was being led
by Emmy Noether at Goettingen. (Hilbert had argued for her inclusion on the fac-
ulty, since he did “not see that the sex of the candidate is an argument against
[it]... After all, the Senate is not a bathhouse”; and when there remained objections
he arranged for lectures announced as his to be delivered by her instead.) Word of
these developments reached Mac Lane via Oystein Ore, one of Noether's students
who was now teaching group theory at Yale. Mac Lane then “discovered the devel-
oping ideas of modern abstract algebra”, adding that “the work of Emmy Noether
and her successors indicated to me that there were brand-new ideas to be found in
mathematics’.

Another branch of mathematics in the mix was topology. It shares with abstract al-
gebra a certain quality of cutting to the essential — the standard joke is that a
topologist can't tell a coffee mug from a donut: in this “rubber sheet geometry”,
sameness depends on whether you can continuously deform one shape into another,
and their common basic property of “having a hole” is what remains when you do
this. Of course, if such visually distinct objects are “the same” (and yes, this does
entail a notion of isomorphism, a “topological isomorphism” known as a homeomor-
phism), then finding ones that are genuinely different can lead to some unusual
shapes indeed... one of which had a direct role in the inception of category theory.
What's more, with a similar focus on what actually matters — structure — and disre-
gard for what doesn’t — appearance —, abstract algebra and topology were a natural
fit. As early as 1895 Poincaré had brought them together with the notion of homo-
topy, which would eventually allow the insights of group theory to be applied to
topology. “Algebraic topology” was being developed in earnest at Princeton in the
1930s when Feynman came into contact with it: “although the mathematicians
thought their topology theorems were counterintuitive, they weren't really as diffi-
cult as they looked... Paul Olum... tried to teach me mathematics. He got me up
to homotopy groups, and at that point | gave up.” (Feynman's invention of path
integrals has been known to perplex mathematicians.) This long history hasn't pre-
vented homotopy from illustrating yet again that there are “brand-new ideas to be
found in mathematics’, in the shape of homotopy type theory, proposed by Vo-
evodsky in 2013. With it another contender for the foundations of mathematics has

appeared, one with several appealing features in terms of computability, and at its
heart an axiom of striking simplicity (the univalence axiom), that implies no less
than that “isomorphic structures are equal’. There is no paint job after all.

A coincidence that wasn’t

Category theory may have been about a coming together of mathematical
branches, but it was also about a meeting of mathematicians who struck up a fruit-
ful partnership. Samuel Eilenberg shared with Saunders Mac Lane a no-nonsense
personality and was known for an “insistence on getting to the bottom of things".
Hyman Bass described him as “preeminently a formalist. He fit squarely into the
tradition of Hilbert, Emil Artin, Emmy Noether, and Bourbaki.” He continues:
“Complexity and opaqueness were, for him, signs of insufficient understanding’.
While Mac Lane had written a dissertation on logic, in addition to studying ab-
stract algebra and some topology, Eilenberg had become an expert in algebraic
topology. It was he who brought to the attention of Mac Lane a remarkable simi-
larity between a result Mac Lane had presented in a lecture on group extensions,
and a result in topology relating to a “p-adic solenoid”. Here is the description of
said solenoid, as given by Mac Lane: “Inside a torus Tj, wind another torus T p-
times, then another torus Ty p-times inside T5, and so on..."” The similarity of these
results from separate mathematical branches was like a red rag to a bull. “The co-
incidence was highly mysterious. Why in the world did a group of abelian group ex-
tensions come up in homology? We stayed up all night trying to find out ‘why.’
Sammy wanted to get to the bottom of this coincidence.”

How do you approach the basics of category theory? Perhaps you agree with Abel
that the right way is in “studying the masters, not their pupils’. If so Mac Lane's
standard, “Categories for the Working Mathematician”, certainly qualifies, however
it calls on a breadth and depth of mathematical knowledge that programmers typi-
cally don't possess. The first sentence of Chapter 1 sets the tone: the category ax-
ioms will be given “without using any set theory”. If this autonomous approach to
establishing category theory certainly makes sense from Mac Lane's point of view,
it doesn't necessarily suit ours, and that's before you consider that the initial con-
cepts are those of “metagraph” and “metacategory”. If anything you're better off
reading the Eilenberg & Mac Lane’s original definition in their 1942 paper “General
Theory of Natural Equivalences’, which is simpler and generally tries to be more
helpful to the reader. It could be a sign of the times: papers of around that time
and earlier — for example those of Alonzo Church — seem to try to present concepts

in a way that will be more easily grasped, using non-technical language where pos-
sible. Poincaré said that to understand a theory, you had to see the reasons for
which it was chosen. Could you grasp it if presented “from the outset in its defini-
tive shape... without any trace of the fumbling steps that led up to it?" Not really,
it would then be a case of learning it by heart. Mac Lane does provide motivation
for the axioms he's about to present, but for the most part the theory is described
in its “definitive shape”. In passing (more or less), he mentions that a category is a
kind of “generalized monoid” (Awodey describes it as a “generalized group”, which
is implied); let's use this description not as a passing remark but as a starting
point.

The group that isn’t

A category loosens the requirements of a group in two important ways. The first is
to do away with the stipulation that every element has an inverse: as we've seen,
this yields a monoid. An example of a monoid sometimes given in computing is the
“free monoid” of strings under concatenation. You can concatenate strings until the
cows come home, and you'll still end up with another string, but you can't con-
catenate a “negative string’ that would take you back where you started, as you
could in a group. In general, the “ideal” world of groups and isomorphisms is re-
placed with a (generally) non-invertible one of monoids and homomorphisms.
There's a definite direction of travel in category theory: it doesn't do to ruffle
feathers by trying to go the other way.

The second and more interesting change is that the binary operation is no longer
guaranteed to produce a value: it becomes a partial function. In a group, any two
elements can be combined to produce a third; in a category two elements might be
able to be combined, but then again they might not. This corresponds to our gen-
eral intuition about functions, which can only be composed under certain condi-
tions. (The functions we've seen thus far in groups, such as rotations and permuta-
tions, are a special, simple case, and can always be combined.) A group modified in
this way becomes a “groupoid”’, and a monoid so modified might have become, as
some have pointed out, a... “monoidoid”. We know it as a category instead.

Knowing that we are dealing with a group generalized in these two ways, let's have
a look at the axioms for a category. A category consists of:

e a collection of objects A4, B, C,...

e a collection of arrows f, g, h,...

such that:

e each arrow f has associated objects known as domain and codomain, and we
write

f:A— B

(f is an arrow from domain A to codomain B)

e given arrows f: A— B and g: B— C, i.e. such that the codomain of f is also
the domain of g, there is a composite arrow

gof:A—C
e composition is associative: for any f: A— B, g: B— C and h: C — D, we have
ho(gof)=(hog)of

o for each object A, there is an identity arrow 1,: A — A satisfying the unit law:
forall f: A — B,

fola=f=1pof

The first thing you notice is the unusual terminology: objects and arrows (also
called morphisms). As mathematical terminology goes, “object” is as vague as
you're going to get... they weren't kidding about the high level of generality. But
the terms already had a certain history: for nineteenth-century logician Frege, as
Heijenoort pointed out, “the ontological furniture of the universe divides into ob-
jects and functions’. And Mac Lane notes elsewhere that “at Goettingen a vector
was an arrow and a vector space consisted of objects (vectors)”. One difference
with Frege's neat divide is that here, as we'll see, arrows themselves can be viewed
as objects.

No sand, just pure theory

It also soon becomes clear that the (partial) binary operation of a category, instead
of being represented by various symbols as in a group, always seems to be o, in
other words composition. To simplify matters further, it is often treated as op-
tional: go f becomes simply gf, corresponding to our usual notation for a product.
The use of the terminology “domain” and “codomain” adds to the impression that
what we have is a generalized group of functions. But that would be too easy.

Dana Scott summarizes it this way: “What we are probably seeking is a ‘purer’ view
of functions: a theory of functions in themselves, not a theory of functions derived
from sets. What, then, is a pure theory of functions? Answer: category theory.” The
reason the use of the word “function” is studiously avoided, despite including its ac-
coutrements of domain and codomain, is that we are not looking at functions as
we know them. Where tradition defined a function as a rule (e.g. z — z?), and later
set theory defined it as set of pairs, category theory takes a minimalist, hands-off
approach: a function is anything — literally anything — that behaves with other
functions in the way we expect. This means above all that their composition, when
permitted, is associative. (You can verify that traditional functions compose asso-
ciatively: it's analagous to making a chain out of three elements, where the two
joins involved can be done in either order.) The temptation when being presented
with examples that are not traditional functions, such as inequalities or logical in-
ferences, is to think “fine, but besides those outliers what we're really talking about
is the usual functions between sets’. It's a temptation that should be resisted, be-
cause notions such as monads rely on non-traditional functions. In summary a cate-
gory is not a generalized group of functions: it's a generalized group of generalized
functions.

This axiomatic definition of arrows, i.e. generalized functions, means our traditional
approach to handling functions is thrown out the window. Even when we are, in
fact, dealing with plain old functions between sets — and this is still the most com-
mon case in computing — we won't be concerned with what the value of the func-
tion is for any particular input, which takes some getting used to. While at Goet-
tingen Mac Lane heard Weyl remark that set theory “contains far too much sand”;
the same criticism can't be levelled at category theory. If we stop to consider arbi-
trary equations between functions, say fg = h, we might be tempted to “solve” for f
using the inverse of g (if it exists) and say f = hg™!. But category theory is loath to
reverse the directions of arrows. When it does, it reverses them all at once, thereby
producing a slew of “co’-elements — dual notions of coproduct, colimit... and the
like. (This leads to category theory's version of a mathematical food joke: what
does a category theorist call a coconut?)

If your view of functions is so detached that you don't consider their value for any
particular input, what exactly can you say about them? As it happens, quite a lot.
If you had a bee colony where for the sake of argument all bees had the same ap-
pearance, you could still work out which one was the queen bee from the interac-
tions with others. Category theory has the makings of a mathematical whodunnit,
where the clues don't seem like much but add up to something. The preface to “A

Survey of Modern Algebra” held that “the most striking characteristic of modern al-
gebra is the deduction of the theoretical properties of such formal systems as
groups, rings, fields, and vector spaces.” In turn Mac Lane and Eilenberg would ex-
plore that which could be deduced from the axioms of a category.

One characteristic of the arrows is that by and large they preserve structure: in the
case of groups, this means homomorphisms; for vector spaces, linear transforma-
tions, etc. And what about the vanilla case of functions between sets? Well there
too... in the sense that there's no structure to preserve. (These categories are re-
spectively known as Grp, Vect and Set, illustrating the custom of naming cate-
gories according to the objects they contain. Set is of most interest in program-
ming.) The notion of a group fits nicely into the stratified world of categories: it's
simply a category with one object. (So in a sense group theory is subsumed by cat-
egory theory — but in practice that wouldn't be the “right generality”.)

Another readily apparent characteristic of category theory is the heavy use of dia-
grams, specifically “commutative diagrams”. Whereas addition was “commutative”
in the sense that you could “exchange” arguments (i.e. a +b=0b+a), here the dia-
gram is commutative in the sense that you can “exchange’ paths of composition
that lead from the same starting point to the same end point: they're guaranteed
to be equal. When considering a very basic example of commutative diagram

you may wonder what you've gained over the simple equation go f = h, or for that
matter gf = h. After all Mac Lane emphasizes that “it's the arrows that matter’ —
not much seems to be added by visualizing the objects as well. And in the very
simplest cases such as this one, you haven't really gained anything at all. However
such diagrams prove their worth with anything more involved, summarizing what is
essentially a series of equations (and of matching domains and codomains) visually,
sometimes suggesting an answer that can be simply “slotted in”, or the outline of a
proof from what is known as “diagram chasing”.

We probably shouldn’'t be too surprised that in a theory where the notion of a

b= 1

function itself is given in terms of its (collective) properties, and not what it “is",

other concepts and definitions follow a similar approach. They are often character-
ized not by a construction but by a “universal property”. The language used to do
so on the whole has a relatively limited, sweeping vocabulary, making full use of
“there exists” and “for all’. These are familiar terms from first-order logic, where
they have well-known associated symbols (3 and V, the inverted E and A due to
Peano and Gentzen, respectively). Here there's a slight twist, in that existence is
usually narrowed down to “there is a unique” (often written 3! in logic), specifying
an arrow that typically “slots in” to a commutative diagram. Again it may seem pe-
culiar that we are not asked to consider the value of a function for any particular
input, but for some types of arrows (inequalities, logical inferences), this notion
doesn't even apply. Where it does apply, notably for functions between sets, it's not
that the notion has suddenly become unimportant, rather that it's typically hidden
by the blanket requirement of a commutative diagram: gf = h means that for all
suitable z (namely in the common domain of f and h), we have g(f(z)) = h(z). So
quite a stringent requirement after all. The fact that the variable z has in effect
disappeared, because of the kind of sweeping statements that are being made, is
not without precedent: witness the combinatory logic of Schonfinkel and Curry.
There the clashes between variable names that can occur in the lambda calculus
are avoided because... there are no variables.

It may be that it's the arrows that matter, but to start off with such property-
based definitions tend to concern objects instead. Given a category C, an initial ob-
ject 0 has the property that for any object 4 in C, there's a unique arrow from 0 to
A. Similarly a terminal object 1 is such that for any object A, there's a unique
arrow from A to 1. For instance in Set, there is only one initial object (the empty
set), but a host of terminal objects, i.e. every singleton (one-element) set. This
may not quite fit the queen bee analogy, but there's still the idea that particular
objects are characterized relatively, “structurally’” by their connections to others, in
this case to all others.

Products revisited

The categorical definition of a product takes the property-based approach one step
further. It's what Awodey calls “probably the earliest example of category theory
being used to define a fundamental mathematical notion.” The most illustrative ex-
ample is probably the product of sets, in other words the cartesian product:

A x B={(a,b)la € A and b € b}

(For finite sets this is of course closely related, through the set sizes, to the usual
notion of the product of two natural numbers.) If we imagine A and B to be “axes”
containing numbers, and A x B to be all the possible pairs of “coordinates” pro-
duced in this way, we can see why the function m: A4 x B— A such that
m,(a,b) = a, which effectively selects the first coordinate, is referred to as a projec-
tion function (onto A) — and there is a similar function m, that projects onto B.
This seemingly intrinsic property of a product — that there is always a way to re-
cover its original component objects, through “projection” — hints at the (admit-
tedly quite abstract) definition of a product that Mac Lane eventually settled on.
This states that for a given category C, the product of objects A and B is an ob-
ject A x B, together with projection arrows iy : A x B— A and n, : A x B — B, that
satisfy a certain universal property: for any object X in C, and arrows f: X — A
and g: X — B, there is a unique arrow u: X — A x B (indicated here and similarly
elsewhere by a dashed line) that slots in to “make the diagram commute™

In keeping with the general approach seen so far, there is no direct construction of
“the”” product of two objects: we simply know that a product, if it exists, satisifies
the given universal property, which more or less says that projection works as we
would expect it to. It's a little bit like stating that a line through a given point is
parallel to another if it doesn’t intersect it. There's a difference, though, in that
you can't prove that such a line is unique: this has to be stated by axiom, if indeed
we're talking about Euclidean geometry. Here you can show fairly straightforwardly
that products are unique “up to isomorphism” (i.e. there exists an isomorphism be-
tween any two of them), which is often as good as you're going to get in some-
thing as structural as category theory. The commutative diagram has another ad-
vantage: by simply reversing the direction of its arrows you arrive directly at the
characterization of a “coproduct”, also known as a “categorical sum” and accord-
ingly denoted by "+" instead of "x". This relationship between product and sum
may recall the early example of a pair of isomorphisms that transformed a group
under multiplication into one under addition, and back.

Products defined in this way are noteworthy for another reason: they are technically
triples, and what's more ones with a certain “shape’: a central object sandwiched
between two arrows that in some sense can be seen as opposites. This arrow-ob-
ject-arrow formation is in some ways a “dual’ version of the object-arrow-object
pattern which is fundamental to category theory. It's by no means the last time
that this mathematical shape will crop up: among many others it characterizes a
certain construction known by the name “triple” until Mac Lane decided to call it a
monad.

While products are often discussed early on in category theory, they weren't pro-
posed by Mac Lane until 1950, nearly a decade after the initial paper which pre-
sented what he and Eilenberg were actually interested in: natural transformations.
As the story goes, the notion of a category itself arose to define a functor, which in
turn was necessary to define a natural transformation. It's worth considering here
why this struck them as a particularly important concept.

Transformations without artifice

Those mathematicians who wish to “get to the bottom of things’ tend to give
short shrift to what they view as distractions along the way. One example is combi-
natory logic: Schonfinkel argues that “a variable in a proposition of logic is, after
all, nothing but a token that characterizes certain argument places and operators
as belonging together; thus it has the status of a mere auxiliary notion that is re-
ally inappropriate to the constant, “eternal” essence of the propositions of logic.” In
the same vein Mac Lane states that “a vector is geometrical; it is an element of a
vector space, defined by suitable axioms... [it] is not an n-tuple of numbers until a
coordinate system has been chosen. Any teacher and any text book which starts
with the idea that vectors are n-tuples is committing a crime for which the proper
punishment is ridicule. The n-tuple idea is not ‘easier,’ it is harder; it is not clearer,
it is more misleading.” This meant that there was something unsatisfying to Mac
Lane about transformations of vector spaces that depended on the “auxiliary no-
tion” of coordinates. In their seminal 1942 paper “General Theory of Natural Equiv-
alences’, he and Eilenberg begin by examining the isomorphisms between a vector
space — i.e. a collection of “objects (vectors) which could be suitably added and
multiplied by scalars” — and its dual. (Duality brings us to another deep structural
notion in mathematics, one that Michael Atiyah defines as a principle that “gives
two different points of view of looking at the same object”. For instance in planar
geometry, the role of points and lines in a theorem can sometimes remarkably be

interchanged to yield a “dual theorem” describing a visually very different construc-
tion, but on some level with the same abstract structure.) Given a vector space L,
the dual space T(L) consisted of “all real valued linear functions t on L" — such as
dot products — which themselves could be manipulated as vectors. L and T'(L) were
isomorphic, but the problem was the following: “such an isomorphism cannot be ex-
hibited until one chooses a definite set of basis vectors for L, and furthermore the
isomorphism which results will differ for different choices of this basis.”

It wasn't until you took the process one step further that the smoke cleared: for
the dual of the dual, or bidual, T(T(L)), “one can exhibit an isomorphism between
L and T(T(L)) without using any special basis in L. This exhibition of the isomor-
phism L = T(T(L)) is ‘natural’ in that it is given simultaneously for all finite-dimen-
sional vector spaces L." They were arriving at a precise definition of the term “nat-
ural”, which as Emily Riehl notes, “had been used colloquially by mathematicians to
mean ‘defined without arbitrary choices'”. There was, after all, a way to do without
the artifice of coordinates to get at the heart of the matter.

The definition of a natural transformation is not that much more complex than
that of a product, but it's a step up in terms of abstraction, as it involves arrows
between categories. This is, to a point, something we've seen before: a group ho-
momorphism transforms one group (a particular kind of category) into another. As
alluded to earlier, the arrows from one category to another — naturally, structure-
preserving — are known as functors: Awodey describes a functor early on as a "‘ho-
momorphism of categories’”. A functor F between categories C and D maps arrows
in a way that satisfies the same structural axiom we saw for groups (with the slight
simplification in notation that the operator in both C and D is assumed to be com-
position, and written . in both cases, even though it could technically differ be-
tween C and D):

F(go f) = F(g) o F(f)

(It also preserves the identity element (F(14) = 1r4), but this can be shown for
group homomorphisms as well.) Although this mapping of arrows is the essence of
the functor, and corresponds to the mapping of set elements in a group homomor-
phism, a functor is also considered to map the arrow's sidekick objects:
F(f:A— B)=F(f): F(A) — F(B), and so “preserves domains and codomains”. So
far, there is little to differentiate this “homomorphism of categories” from a group
homomorphism. But a natural transformation will introduce a crucial distinction in
the way it is used, in so doing blurring the lines between levels of abstraction. In
our first example of an isomorphism, the group (R,+) was transformed into

(R**, x) by the exponential function F(z) =e®. There F appeared clearly as some-
thing “external”, and served only to convert one group of numbers into another. By
contrast some of the power of category theory can be seen in the way, via natural
transformations, it brazenly mixes functors between categories and arrows within
categories: they are all, in the end, (generalized) functions.

What, then, is a natural transformation? A “morphism of functors”. If you're reflex-
ively thinking of a set of functor pairs, this isn't “the right generality”. The domain
of a natural transformation is not a set, not even a singleton: it's simply a functor.
The arrow we're describing is a transformation from that single functor to another.
But let's consider first somewhat more familiar territory, the idea of mapping one
function to another, as is known in computing by “higher-order function”. What
general form might this mapping take, not in terms of somehow simply listing pairs
of functions as input and output but in providing the more traditional notion of a
“rule”? An example would be the “differential operator’ which takes a function and
returns its derivative, often according to a simple algebraic recipe. But in the gen-
eral spirit of category theory, let's stick to a construction that uses its central tool:
composition. If you wanted to convert a function f: A — B to a function
g: A" — B’ in this way, you would presumably define the transformation F along the
lines of

g=F(f)=hofoh

for some functions h and k' (“h prime”). You know something else for free: the
“plumbing” has to work out. To convert the domain (A4) and codomain (B) of the
original function, h and A’ have to act in some sense as “adapters’, with h: A" — A
and h': B— B/, yielding a chain A"+ A — B — B’ that results in the desired
g: A — B.

Let's now have a look at the definition of a natural transformation. Given cate-
gories C and D, and functors F and G between those categories, a natural trans-
formation i from F to G is a family of arrows n, contained in D, but indexed by
objects in C. Thus to each C-object A corresponds one of these component D-ar-
rows ny : F(A) — G(A), with the following property: for any C-arrow f: A — B, the
following diagram commutes:

F(A) - G(A)
F(f) G(f)
F(B) ™ G(B)

As with the earlier definition of a product, this doesn't “construct” a natural trans-
formation, but states the property it (or more precisely all of its components) must
satisfy if it exists. The definition as given illustrates something noteworthy about a
natural transformation: it's not a function in the traditional sense. The clue was in
the name, after all. It's a collection of functions that, taken together, behave as ar-
rows are expected to behave, above all by composing associatively with other simi-
lar, matching arrows. As it happens a natural transformation makes mathematically
precise the notion of a generic function in computing. If you've ever wondered
whether a generic function, with its type undefined, is really a function: in the set-
theoretic sense it isn't, but in terms of category theory it is.

What though is that particular commutative diagram actually saying? How exactly
is it transforming F into G? To get an idea of what it's saying, we may want to
look at what it's almost saying. What the diagram gives us is the arrow equation
G(f)ong=ngo F(f). What it says with a little artistic license is that
G(f) =ngo F(f)on, ', which is essentially the mapping of F(f) to G(f), for a
given f, that we are looking for, one that fits the general expected shape of trans-
formation through composition. It would in fact say exactly that if we knew that n4
had an inverse, but we don't. So category theory does the next best thing, which is
to pin down the meaning of G(f) without taking that final step of defining it ex-
plicitly. It's not altogether unlike having an equation between real numbers az = bc
and refraining from expressing = as bc/a, if you don’'t know whether a has an in-
verse (i.e. isn't zero). The stolid two-and-two, rectangular symmetry of the commu-
tative diagram can in fact nearly be seen as one-and-three, and with it another
product-like definition in terms of a “triple with opposites’.

The component arrows of the natural transformation cut across the general direc-
tion of travel of arrows within D, as they join their respective start and end objects
(domain and codomain). They are in some sense “adapters” that adjust the various
F-mapped arrows to G-mapped ones solely on the basis of their differing endpoints.
There is a graphical interpretation: Awodey likens the functors from categories C

to D to “pictures’ of C in D, and a natural transformation to a “cylinder” with a
picture at each end.

Let's consider a little more closely the general mathematical shape of a triple
whose outer elements are in some sense opposites. Of the many examples which fit
this description, there's for instance the notion of conjugacy: elements a and b of a
group G are conjugates if there is an element g in G such that b = gag™!. Trans-
lated to linear algebra this becomes matrix similarity: square matrices A and B are
similar if there’s a matrix P such that B= P 1AP. If matrix multiplication were
commutative, we could switch the order of the operands and the outer elements
would simply cancel each other out. But it isn't, suggesting that a direction of
travel in such triples yields not equality but an approximation thereof. There's a
hint of the shape in first order logic, where the universal (V) and existensial (3)
quantifiers can be expressed in terms of one another, in an extension of De Mor-
gan's laws: if P(z) is a predicate, then VzP(z) is equivalent to —(3z—P(z)). E.H.
Moore, who had influenced Mac Lane while at Chicago (persuading him to study
at Goettingen), once said that “the existence of analogies between central features
of various theories implies the existence of a general abstract theory which under-
lies the particular theories and unifies them with respect to those central features.”
The general abstract theory in question turned out to be category theory; and the
part of that theory which best explains these similar mathematical shapes is that of
adjoint functors.

Adjointness everywhere

With adjoints we are very close to the notion of a monad: they weren't discovered,
by Daniel Kan, until 1956, published in 1958, and Godement followed up with his
“standard construction” the same year. Awodey makes “the admittedly provocative
claim that adjointness is a concept of fundamental logical and mathematical impor-
tance that is not captured elsewhere in mathematics”. According to Mac Lane, “the
slogan is ‘Adjoint functors arise everywhere'”. In fact we've already seen a major
example: the age-old logical quantifiers of “for all” and “there exists’ were shown by
William Lawvere to be, quite simply, adjoint functors.

Natural transformations may have shown the power of mixing homomorphisms with
“ordinary” arrows, but these homomorphisms (functors) were in the same direction.
Adjoint functors take us one step further by using functors in opposite directions,
binding two categories together as tightly as they can be bound, even if they are
quite different in nature, particularly where one has more structure than the other.

It's the mathematical version not of a one-way ticket, but of a “round trip". Even if
you start and end in the same category, transiting through another leaves an un-
mistakable “trace”.

We begin again with categories C and D, and two functors between them — except
this time we'll call them F and U, for reasons we'll see shortly. With natural trans-
formations the direction of travel was from C to D: both functors pointed this way,
and C-objects indexed D-arrows. The commutative diagram that effectively trans-
formed one functor into the other was then wholly within D. In the case of adjoints
though everything is intertwined. F is still from C to D, but U is in the opposite
direction, from D to C.

Instead of starting with a single object in C, an adjunction asks us to simultane-
ously consider arbitrary objects C and D in C and in D. Two further objects sug-
gest themselves: the images of these objects by the relevant functor, i.e. F(C) and
U(D) in D and C, respectively. We now have two pairs of objects that can serve as
the endpoints of C-arrows and D-arrows: the question is, what is the relationship
between such arrows? We'll consider two separate approaches and definitions.

In the first, we'll use a construction based on a universal property. If we take an ar-
bitrary C-arrow between C and U(D), can it be transformed to a D-arrow between
F(C) and D? In fact we'll start the other way around, with a D-arrow g: F(C) — D
. The obvious candidate of functor U will take it to a C-arrow U(g) between
U(F(C)) (or more simply UFC) and U(D). But this won't be of the form we're
looking for, i.e. f:C — U(D), since the domains don't match. At the very least we
require a domain adjustment — and this is where the “adapters’ within natural
transformations come into play once more.

So we introduce a natural transformation n:1c — U o F between “endofunctors’,
i.e. functors that start and finish in the same category (C), where here one is the
identity “do nothing” 15 and the other is a round trip from C to D and back again.
Then an adjunction consisting of the triple F, U, and n satisfies the following prop-
erty: for any C-object C, D-object D and C-arrow f: C — U(D), there's a unique
D-arrow g: F(C) — D such that f =U(g) ong, i.e. such that the following triangle
commutes:

nNe

C

Categories C and D don't play symmetric roles, and accordingly there's a notion of
left and right for the functors between them: F is the left adjoint to U, and U is
the right adjoint to F, written F 4 U. While F and U may go in opposite direc-
tions, they are not “true opposites”. If they were exact inverses U o F would be the
identity functor 1.. Instead 1¢ and Uo F are related by natural transformation n,
known as the unit of the adjunction, with its universal property given above. (Re-
verse all the arrows and you get the counit e: FoU — 1p. If you're rusty on your
Greek letters, n — “eta” — is roughly equivalent to “i", as is iota, and could be taken
as emphasizing that unit is “like” identity.)

The second definition of adjoints uses the notion of “hom-set”, which although de-
rived from “homomorphism” means simply the set of arrows between two objects X
and Y in a category C, written either Hom(X,Y) or C(X,Y). It states that an ad-
junction is characterized by an isomorphism ¢ : D(F(C),D) = C(C,U(D)) that is
natural in C and D — we can just take this to mean that it's a bijection “defined
without arbitrary choices”. ¢ is in fact defined, for any C in C, D in D and
g: FC — D, by ¢(g) = U(g) ong. (This also means, taking the particular case of D
set to F(C) and g set to 1p¢, that ng = ¢(1rc), since U preserves identity arrows).
There is thus a one-to-one correspondence between these particular C-arrows (from
C to U(D)) and D-arrows (from F(C) to D). This definition may appear as more
symmetric than the first, but they're equivalent, and there's still the same notion of
left and right. The bijection can be written

F(C)— D

C — U(D)

and can also be presented as a commutative diagram:

U(D) ¢—5— D

This may recall the rectangular commutative diagram of a natural transformation,
but instead of being wholly contained within D, it spans both categories, starting
with C in C and D in D. And there is no need to squint to see a triple with “oppo-
sites’ (or more precisely adjoints): the commutable paths of the rectangle are not
two-and-two but one-and-threeg, i.e. if we name f the C-arrow from C to U(D) and
g the D-arrow from F(C) to D, then f =UogoF.

Such an intertwining of categories produces powerful results; it's a kind of best at-
tempt at symmetry in a situation which is inherently asymmetric. Typically cate-
gory D has more structure than category C, and U is often a “forgetful functor”,
which commonly “forgets’ the structure of a group, ring, field etc by mapping it to
its underlying set (accordingly it's often denoted as U). In the other direction, F
often constructs “free” objects with structure, such as the free monoid of strings
seen earlier, by using the elements of a set as generators, in the manner of a basis
for a vector space. As an example we can take Set and Grp as the two categories
C and D (of sets and groups), with the forgetful functor U : Grp — Set mapping
each group to its underlying set, and conversely the functor F: Set — Grp con-
structing the free group F(X) from a set X. The underlying set of this free group,
S =UF(X), is the image of set X under the “round trip” Uo F: it's such that the
unit n: X — S maps each element of X to itself in S. David Spivak has an evoca-
tive image for a very similar example (he replaces Grp with Mon, the category of
monoids). For him adjoint functors are like “dictionaries that translate back and
forth between different categories” that are not necessarily “on the same conceptual
level’. He asks us to consider different levels of language, contrasting baby talk
made up largely of repeated sounds with adult conversations where sounds are in-
terpreted as words and sentences. Translating the baby talk of Set involves at-
tempting to assign a meaning to it as words in the more structured Mon, but in
the other direction the translation yields merely sounds for which the meaning has
been “forgotten”.

Monads, or higher structure by stealth

The striking thing about monads, having looked at natural transformations and ad-
junctions, which both relate a pair of functors between a pair of categories, is that
we're back down to a single category (C). We're even back down to a single func-
tor (T'), necessarily an endofunctor from C to C. What we have besides this is a
way of relating T' with iterations of itself, through two natural transformations that
are the opposing bookends of our triple, and a couple of simple equalities that
must be satisfied. And yet this is enough to imply the existence of a more struc-
tured category D, and an adjunction that binds it to C. In this way “every monad
arises from an adjunction”. You might say it's a bit like an infant mouthing an ap-
proximation to “homotopy type theory” being a giveaway that there's a world where
those sounds correspond to words and concepts that make sense. So one way to
view monads is as an adjunction with a hidden, more advanced category: higher
structure by stealth. It also means that attempting to reduce monads in program-
ming terms strictly to ordinary functions between sets strains credulity: their defin-
ing characteristic is the “trace” of that structure.

While it's straightforward to give the definition of a monad, the terms used and
overall structure make greater sense if we consider once more those basic struc-
tures: groups and monoids.

Groups and monoids are such fundamental patterns that they begin to crop up
within categories. This is particularly the case for monoids, which correspond more
to the idea of a general direction of travel, where the existence of inverses can't be
guaranteed. Whenever you have a means of combining two mathematical objects to
produce a third of the same nature, the question can be asked: is the process asso-
ciative, i.e. can such objects essentially be chained together? If all relevant objects
can be combined in this way (and one of them is the “do nothing” identity object),
a monoid it is. And in a category the opportunities for combination abound — be-
yond the composition of arrows that is its essence — particularly where you have the
notion of a product of objects. The cartesian product is a near miss when it comes
to forming the backbone of a monoid, since it's only associative up to isomorphism
(the product set A x (B x C) contains elements of the form (a, (b,c)) as opposed to
((a,b),c) in (A x B) x C). It does nonetheless qualify as an instance of a generalized
product ®, which differs from the product defined earlier, and characterizes so-
called “monoidal categories” in which monoids are common. Set is one such cate-

gory.

You might think that the original, minimalist definition of a monoid hardly needed
reviewing; and that its depiction as “a category with one object” was the final word

on the matter. But just as there is a categorical view of a product, there is a more
abstract view of a monoid itself. Where the product was predicated on the exis-
tence of projection arrows, the categorical approach to defining a monoid is one
where having chosen a suitable notion of object product, a binary operator on an
object M is an arrow from its “square” to itself. This arrow p: M x M — M (“mu”
is thought of as defining “multiplication” on M. The monoid (M,u,n) is completed
by a second arrow n:1— M, where 1 is as before a terminal object. The associa-
tivity and identity equalities are then represented by the following commutative dia-
grams:

Mx Mx M2 A< M M 5 4 o 227 6

pexLag H e
Las 1 ps

M x M > M M

In Set, this is essentially the original definition via (M, *,e), with the cosmetic dif-

ference that element e of set M has become a morphism n which picks one of the
members of M, an entirely equivalent construct of the identity as a “generalized el-
ement”.

It's with this in mind that we can give the definition of a monad on a category C:
it's a triple comprised of

e an endofunctor T: C — C

e a unit natural transformation n: 10 — T

e a multiplication natural transformation p: T2 = T
such that the following diagrams commute:

‘ A ' ; T
73 —£ 772 T —2£. 72 oL T

T2 %T

in other words such that

popr=polp

ponr=1=poTn

A monad (T,n,u) thus has an unmistakable overall structural similarity with the
categorical definition of a monoid, with natural transformations 1 (the unit) playing
the role of identity and p acting as multiplication. When viewed from a different
angle, i.e. as a structure within the category of endofunctors on C, with multiplica-
tion represented by function composition, it /s a monoid. But it's more useful to
stick with the original point of view.

Note also that the idea of a binary operator on a set M? — M has been generalized
to p:T? — T where T is an endofunctor and T? is its repeated application, instead
of the cartesian product of a set by itself.

A typical example in computing is the /ist monad, or free monoid monad (on Set,
and implying higher-structure category Mon). Here the endofunctor T : Set — Set
maps a set S to the set of finite lists of elements of S. The unit (natural transfor-
mation) n has components ns: S — T'S mapping each element of S to the corre-
sponding singleton list. The multiplication p has components ug: T%S — TS that
are concatenation functions, flattening a list of lists into a single one.

Let's briefly review where the associativity and unit laws come from. We start by
deriving the “triangle identities’ for a given adjunction F: C < D : U with unit
n:1lc— UF and counit ¢: FU — 1p. As before for any C € C, D € D and
g: FC — D we have ¢(g) = U(g) one (the equivalent for the counit is that for any
F:C > UD, ¢ '(f) =ep. F(f)). And as before we use the particular case of interde-
pendent values of C and D to derive new equalities: just as setting D to F(C) and
g to 1rc yields ng = ¢(1r¢), setting C to U(D) and f to 1yp vields ep = ¢ '(1yp).
We can then see that 1rc = ¢ '(Ng) = epc 0 F(ng) and 1yp = ¢(ep) = U(ep) o Nyp, oF
more concisely:

UEOT]U:]_U

A word on notation: there are no parentheses provided for when these equations
are “completed” by objects: for instance ny will become the indexed function ny(p),
while Fn becomes F(n.). But somewhat similarly to Haskell where the right-asso-
ciativity of type arrows and function composition means parentheses can be omit-
ted, they can be here too. We now have a third definition of an adjunction: in
terms of a unit n and counit € that satisfy these triangle identities.

It's this simpler “equational” definition of an adjunction which yields the monad’s
associativity and unit laws. We start by considering a category C and an arbitrary
functor T from C to C, i.e. an endofunctor. We then suppose that T is in fact the
product of adjunct functors F and U to and from another category D: T=Uo F.
Since F U there's a unit natural transformation n:1c — Uo F, so in this case
n:1—T. There's also a counit € : FoU — 1p. Among this family of indexed D-ar-
rows, there is, corresponding to the particular value of D given by F(C), a function
epc: F(U(F(C))) — F(C), or more simply epo: FUFC — FC. This particular D-
arrow can be once more sent to a C-arrow by functor U, vyielding overall
Uepc: UFUFC — UFC. This provides a function in terms of “round trips”,
u:T?— T (that is, p = Ueg). It turns out that, with a little prodding, the triangle
equalities yield expressions in terms of round trips as well. Again setting D to the
particular value FC,Ue o ny = 1y yields Uepe o nyre = lure, of pony = 1. Compos-
ing by functor U for a given object C, epoFn=1p yields
UepooUFng = Ulpe = 1ype, or poTn = 1p. Associativity requires a little more
work, but the commutative diagram for a natural transformation from FoU to 1p
means that for any D-arrow f between A and B, in C we have foe, = ego FUY.
Taking the particular arrow f =epz between FUB and B, setting B to FC (i.e.
A=FUFC and f=¢p;), and finally applying U... we arrive at
Uepc o Uspype = Uepo o UFUgpe, in other words popy=poTp. This gives us the
monoid-like commutative diagrams for associativity and unit.

There's a straightforward relationship between an adjunction and the “hidden ad-
junction” that is a monad. Any adjunction (F,U,n,¢) yields a monad (T,n,p) with
T = UF, n unchanged, and p = Uep. Conversely “every monad arises from an ad-
junction™: given any monad (T',n,p) on a category C, there necessarily exists a cat-
egory D such that there is an adjunction (F,U,n,¢) between C and D, again with
T = UF, n unchanged, and p = Uep. So the unit stays the same, and multiplication
is a kind of conjugate of the counit, in fact known as a “whiskered” counit.

Since, then, a monad is basically equivalent to an adjunction — which after all is
perhaps the pivotal notion of category theory, and appears throughout mathematics
— while presenting a simpler appearance (one category, one functor), we can't be
too surprised by its usefulness and increased uptake in computing. Eugenio Moggi
started things off with “Notions of computation and monads” in 1991, which ar-
gued for a “categorical semantics of computation”. Philip Wadler's “The essence of
functional programming’, describing the use of monads to “structure functional pro-
grams', announced their introduction in Haskell the following year. There is,
though... the name. Mac Lane may not have done its adoption within computing

any favors by overruling Godement's earlier description as a “standard construc-
tion”, and Eilenberg and Moore's use of the term “triple” (which he thought had
“achieved a maximum of needless confusion™). To be sure, the intention was there
right from the start: he notes that “the discovery of ideas as general as these is
chiefly the willingness to make a brash or speculative abstraction, in this case sup-
ported by the pleasure of purloining words from the philosophers: ‘Category’ from
Aristotle and Kant, ‘Functor’ from Carnap (Logische Syntax der Sprache), and
‘natural transformation’ from then current informal parlance.” Mac Lane’s study of
the philosophy of mathematics while at Goettingen may have played a role, along
with the fact, in this particular case, that he had written for the philosophy journal
“The Monist”. You might not think the name of a mathematical concept is of much
importance. But Pierre Cartier once admitted that “for a long time | didn't like
groupoids because they have an ugly name... ‘monoid’ isn't much better”, before
musing about “asteroid” and “humanoid” but thankfully not moving on to the term
“monad”. If a prominent member of Bourbaki can be put off by a mathematical
term, he can't be the only one. Dana Scott, while describing category theory as
“unavoidable”’, also drew attention to its “odd terminology”. Perhaps because of
this, some programming languages use monads while heeding the maxim “don’t
mention the m-word”. On balance, though, it would seem to make more sense to
use existing terms and explain them clearly. Of course Mac Lane had an opinion
about such things: best not to exhibit “carelessness... and inattention to established
terminology, traits which”, ahem, “we do not need to copy from the physics com-
munity.”

There's a near-consensus these days that the “New Math" reformers went too far.
It's hard to disagree entirely when physics teachers were obliged to teach their own,
“practical” version of mathematics that had suddenly been jettisoned to make room
for abstract algebra. But you might also say that the counter-reformers threw the
baby out with the bathwater. Something doesn’t add up about the continued un-
willingness, half a century on, to teach the basic concept of a group to teenagers —
a concept most associated with another teenager whose life was anything but bor-
ing. For a short while they could be made aware that there might be something
more to mathematics than triangles and numerical recipes. And who knows, years
later they might not be particularly fazed by the mathematical notion of a monad.

© 2018

References and Further Reading

Books

Groups

Stewart, lan (1975) Concepts of Modern Mathematics
Stewart, lan (2003) Galois Theory
Birkhoff, Garrett and Mac Lane, Saunders (1965) A Survey of Modern Algebra

Category Theory

Awodey, Steve (2010) Category Theory

Mac Lane, Saunders (1971) Categories for the Working Mathematician

Pierce, Benjamin C. (1991) Basic Category Theory for Computer Scientists
Riehl, Emily (2016) Category Theory in Context
Leinster, Tom (2014) Basic Category Theory

Stewart, Ian (2008) Taming_the Infinite
Feynman, Richard (1985) “Surely You’re Joking, Mr. Feynman!”: Adventures of a Curious

Character

Papers

Eilenberg, Samuel and Mac Lane, Saunders (1945) General Theory of Natural Equivalences

Moggi, Eugenio (1991) Notions of computation and monads
Wadler, Philip (1995) Monads for Functional Programming
Awodey, Steve and Harper, Robert (2015) Homotopy Type Theory: Unified Foundations of

Mathematics and Computation

Stroustrup, Bjarne Evolving_a language in and for the real world: C++ 1991-2006

Articles

Rogier F. van Vlissingen (1985) Interview Prof. Dr. Edsger W. Dijkstra
Kelly Devine Thomas (2010) The Fundamental Lemma: From Minor Irritant to Central Prob-

lem
Colin McLarty (2007) The Last Mathematician from Hilbert’s Gottingen: Saunders Mac Lane as

Philosopher of Mathematics

https://www.goodreads.com/book/show/183761.Concepts_of_Modern_Mathematics
https://www.goodreads.com/book/show/164562.Galois_Theory
https://www.goodreads.com/book/show/1229768.A_Survey_of_Modern_Algebra_AKP_Classics_
https://www.goodreads.com/book/show/2047855.Category_Theory
https://www.goodreads.com/book/show/1088482.Categories_for_the_Working_Mathematician
https://www.goodreads.com/book/show/1810837.Basic_Category_Theory_for_Computer_Scientists
https://www.goodreads.com/book/show/29771233-category-theory-in-context
https://www.goodreads.com/book/show/22108484-basic-category-theory
https://www.goodreads.com/book/show/6963933-taming-the-infinite
https://www.goodreads.com/book/show/35167685-surely-you-re-joking-mr-feynman
https://www.semanticscholar.org/paper/General-Theory-of-Natural-Equivalences-Eilenberg-Maclane/265aeb600987680f26489f9a3670b891801569ae
https://www.disi.unige.it/person/MoggiE/ftp/ic91.pdf
http://homepages.inf.ed.ac.uk/wadler/papers/marktoberdorf/baastad.pdf
https://www.cs.cmu.edu/~rwh/papers/siglog/siglog.pdf
http://www.stroustrup.com/hopl-almost-final.pdf
https://www.cs.utexas.edu/users/EWD/misc/vanVlissingenInterview.html
https://www.ias.edu/ideas/2010/fundamental-lemma
https://case.edu/artsci/phil/BJPSMacLane.pdf

Graziano Lo Russo (2008) An Interview with A. Stepanov
A History of OCaml

Video

BBC Horizon on Andrew Wiles’ proof (1996) Fermat’s Last Theorem

[HES interview with Pierre Cartier (2014, in French) Cartier interview

Blogs

Bartosz Milewski (mathematical and programming point of view): Monads for the Curious Pro-

grammer

Tai-Danae Bradley (mathematical point of view): Category Theory

Eric Lippert (programming point of view): Fabulous adventures in coding: Monads

http://www.stlport.org/resources/StepanovUSA.html
http://ocaml.org/learn/history.html
https://www.bbc.co.uk/iplayer/episode/b0074rxx/horizon-19951996-fermats-last-theorem
https://sites.google.com/site/logiquecategorique/documents/videos/interviews-2014#TOC-Pierre-Cartier-le-20-mai-2014-l-IHES
https://bartoszmilewski.com/2011/01/09/monads-for-the-curious-programmer-part-1/
https://www.math3ma.com/categories/category-theory
https://ericlippert.com/2013/02/21/monads-part-one/

