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It’s a tall order for a pro gram mer these days to avoid com ing into con tact with the

term “monad”. Hav ing been in tro duced into Haskell in the early ’90s, it’s now more

or less part of the main stream, if its pres ence in Java is any thing to go by. Look

around and you’ll find quite a few de scrip tions of what mon ads are ‘like’ – but this

often begs the ques tion: why not just say what they are?

The short an swer, of course, is that mon ads are part of a branch of pure math e‐ 

mat ics, and one that few will have stud ied: cat e gory the ory. Usu ally taught at ad‐

vanced un der grad u ate and at grad u ate level, it’s suffi  ciently ab stract to have once

earned the moniker of “gen eral ab stract non sense”. And mon ads are not the first

item on the menu: in Steve Awodey’s “Cat e gory The ory”, you won’t find them

men tioned be fore page 253. But ar guably you can go some way to wards grasp ing

the no tion of a monad from con cepts that can be, and once rou tinely were, taught

to teenagers: groups and ho mo mor phisms. How so? Be cause a monad as such is

es sen tially a struc ture very sim i lar to a group; and be cause the busi ness end of a

monad is es sen tially a ho mo mor phism.

Be fore all that, per haps first a word on the kind of math e mat ics a pro gram mer

should rea son ably ex pect to see and use: no one bats an eye lid when terms like

“tuple”, “set” and “vec tor” are part of a pro gram ming lan guage; and of course the

no tion of a func tion is a fun da men tal one in com put ing, just as it is in math e mat‐ 

ics. But how ad vanced, and how ab stract? Edgar Dijk stra once re marked that “so-

called higher order func tions... are con sid ered too fancy to even talk about to many

math e mati cians, they are func tions that have func tions for their ar gu ment and may

re turn a func tion as a value”, yet he met de vel op ers in in dus try who talked about

them “as if they were the most nor mal thing in the world”. Is cat e gory the ory’s level

of ab strac tion the “new nor mal” in com put ing?

The Mon ad pest

It may be worth con sid er ing the ex pe ri ences in a field whose re la tion ship with

math e mat ics (in clud ing ab stract math e mat ics) has more than a few sim i lar i ties

with that of com put ing: physics. Not least be cause it wasn’t ini tially con sid ered to
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be a sep a rate dis ci pline: for one, math e mati cians seem over the cen turies to have

spent an in or di nate amount of time pre cisely cal cu lat ing the orbit of plan ets – in‐ 

clud ing Gauss with Ceres, and as late as Laplace with his “Ce les tial Me chan ics”.

New ton ex em pli fies a time when math e mat ics and physics were more or less in dis‐ 

tin guish able: Galileo may have said that “the laws of na ture are writ ten in the lan‐ 

guage of math e mat ics”, but it was New ton who showed that more often than not

the di alect was cal cu lus, and that the laws were re la tions be tween de riv a tives.

Physi cists don’t balk at being pre sented with a diff er en tial equa tion – it’s their dis‐ 

ci pline’s bread and but ter. But ab stract al ge bra can be an other mat ter.

In fact one of the first major en coun ters be tween physics and ab stract al ge bra

didn’t go smoothly. Group the ory, which turned out in the 1920s to have im por tant

ap pli ca tions to the newly de vel op ing quan tum me chan ics, raised the hack les of a

num ber of physi cists, in clud ing Pauli who fa mously re ferred to the “Grup pen pest” –

the plague of the groups. Over time, physi cists stopped grum bling and made their

peace with group the ory. Will the same hap pen with pro gram mers and the “Mon ad‐ 

pest”? Maybe so. Al though it must be said that mon ads are a more ad vanced con‐ 

cept.

If any thing the re la tion ship be tween com put ing and math e mat ics is a more “foun‐ 

da tional” one. You can trace the ori gins of com put ing back to cer tain pro gram ma‐ 

ble ma chines – per haps Jacquard’s loom, or the work of Charles Bab bage and Ada

Lovelace; but in terms of the o ret i cal un der pin nings, which would apply to any such

ma chine, it’s hard to argue with the im por tance of two pa pers of 1936: Alonzo

Church’s “An Un solv able Prob lem of El e men tary Num ber The ory” and Alan Tur‐ 

ing’s “On Com putable Num bers, With an Ap pli ca tion to the Entschei dung sprob‐ 

lem”. Church and Tur ing were both math e mat i cal lo gi cians, and these pa pers both

an swered the same fun da men tal ques tion in logic (the “de ci sion prob lem”) posed by

David Hilbert, one of the lead ing math e mati cians of the nine teenth – yes nine‐ 

teenth – and twen ti eth cen turies. The no tion of “com putabil ity” cru cial to an swer‐ 

ing this ques tion was at this time a strictly math e mat i cal one, even though it was

clear that there could – would – be a link to a me chan i cal or elec tronic de vice.

Church and Tur ing had given very diff er ent an swers, but they were shown to be

equiv a lent (as was an other given by Gödel). It’s the vast gen er al ity of the ques tions

that can be asked in com put ing – not least “what is com putable” – that dic tate the

kind of math e mat ics that are in volved. Per haps we should not be sur prised that

here we are asked not to re mem ber some ob scure sta tis ti cal mea sure on the fringes

of math e mat ics, but to con sider ques tions of struc ture and ab strac tion at its core,

ones that are ad dressed by ab stract al ge bra and cat e gory the ory.



So it would seem rea son able to wade into ab stract al ge bra – at the shal low end.

Per haps we should note in pass ing that with “plain old” al ge bra we are al ready at a

cer tain level of ab strac tion: the use of sym bols to rep re sent nu meric vari ables,

along with ad di tion, equal ity and the like took cen turies to set tle into its cur rent

form; and even though you can find Dio phan tus in an cient Greece using  for the

un known,  for its square and  for its cube, you won’t find the now tra di tional

no ta tion of  rep re sent ing a square until Descartes and Gauss. Rather Baby lon ian

in scrip tions find echoes in Car dano’s 16th cen tury in struc tions to add “the square

of one-half the con stant of the equa tion; and take the square root of the whole”.

Ab stract al ge bra would begin to un moor these sym bols from their arith meti cal

roots, and in par tic u lar let ters would come to rep re sent not num bers but ar bi trary

math e mat i cal ob jects, what ever these might be. This also took the name of “mod‐ 

ern al ge bra”, and is some times still re ferred to that way today – al though nearly

two cen turies later this is a truly loose in ter pre ta tion of the word “mod ern”.

What is the shal low end of ab stract al ge bra? The group. Some thing suffi  ciently

sim ple that Grothen dieck once spoke of its in tro duc tion, and of the in ven tion of

the sym bol for zero, as “child ish steps” with out which math e mat ics had more or

less stag nated “for a thou sand years or two”. De spite its ab strac tion, the fun da men‐ 

tal sim plic ity and com pact ness of a the con cept of a group once led it to be taught

at sec ondary school. The Space Race had a role in kick start ing a pe riod of math e‐ 

mat i cal teach ing in var i ous coun tries with an em pha sis on rel a tive “moder nity”

known as “New Math”. In the US this in volved teach ing the ba sics of sets in pri‐ 

mary school, and some times later mov ing on to ab stract al ge bra. You can for in‐ 

stance find an 11th-grade text book of the era de scrib ing “the very im por tant struc‐ 

tures with one op er a tion called groups”, con tin u ing: “They ap pear through out

math e mat ics in many diff er ent guises. The study of groups as such is an in stance

of al ge bra at its purest.”

Down with Eu clid!

But it was in France that this kind of teach ing was most sys tem atic, and di rected

at the youngest au di ence. There the no tion of a group was pre sented in the equiv a‐ 

lent of the US 8th grade (4ème). The par tic u lar i ties of the French sys tem – with

its cut offs for birth dates by cal en dar year and not school year – in fact mean that

the phrase “taught to teenagers” is not en tirely ac cu rate: in the early 70s, a rig or‐ 

ous pre sen ta tion of groups was in eff ect deemed suit able for twelve-year-olds. Of

course whether twelve-year-olds typ i cally agreed with this as sess ment is an other
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mat ter... There were a few rea sons for this en thu si as tic, yet aus tere ap proach, the

main one being the in flu ence of Bour baki, as a group of promi nent, mainly French

math e mati cians came to be known. They pub lished under this pen name for

decades (amus ing them selves by de vis ing a fic ti tious back story for Nico las Bour‐ 

baki), and along side their many tomes which at tempted to pre sent a co her ent vi‐ 

sion of the then state of math e mat ics, had a siz able in flu ence on French math e‐ 

mat i cal teach ing at all lev els. (They are also re spon si ble for the con cept of a

monad, inas much as Roger Gode ment was a mem ber of Bour baki when his “stan‐ 

dard con struc tion” ap peared in 1958.) Among their found ing mem bers was Jean

Dieudonné, whose one time cry of “Down with tri an gles! Down with Eu clid!” sig‐ 

naled the urge to move from teach ing “fos silized geom e try” to cov er ing the more

ab stract math e mat ics that had come to the fore in the pre vi ous cen tury.

One rea son the con cept of a group may have seemed a nat ural fit for sec ondary or

even mid dle school was that its dis cov erer was him self a teenager – a cer tain

Evariste Ga lois, whose tem pes tu ous life, dur ing a time of po lit i cal tur moil that in‐ 

cluded a sec ond French rev o lu tion in 1830, was cut short by a duel at the age of

twenty. He was led to it by in ves ti ga tions into poly no mial equa tions, a sub ject that

had in trigued math e mati cians for cen turies, and one vari ant of which – Dio phan‐ 

tine equa tions, for which only in te ger so lu tions are sought – would yet play a role

in the de vel op ment of no tions be hind com put ing, in the form of a “de ci sion prob‐ 

lem” posed by Hilbert. Hilbert who would note how Ga lois’ work ex em pli fied math‐ 

e mat i cal “in de pen dence”: while “surely the first and old est prob lems in every branch

of math e mat ics stem from ex pe ri ence and are sug gested by the world of ex ter nal

phe nom ena”, even tu ally “it evolves from it self alone new and fruit ful prob lems, and

ap pears then it self as the real ques tioner. Thus arose... Ga lois’s the ory of equa‐ 

tions... in deed al most all the nicer ques tions of mod ern arith metic and func tion

the ory arise in this way.” Specifi  cally Ga lois was look ing at quin tic equa tions, i.e.

poly no mi als of the fifth de gree. There were well-known “so lu tions in rad i cals”,

which in volved sim ple arith metic op er a tions and nth roots, for equa tions of lesser

de gree, in clud ing of course the gen eral so lu tion to a qua dratic equa tion that most

are fa mil iar with. But the lack of progress in find ing a sim i lar so lu tion for quin tics

had per suaded many math e mati cians for a while that none ex isted. Then Ruffini

had (al most) proved it, and Abel had proved it be yond any doubt. Ga lois knew all

this, but he wanted to know why.

It’s in deed strik ing that a math e mat i cal no tion so fun da men tal and with as many

links to the phys i cal world should have been un earthed by an “in ter nal in ves ti ga‐ 

tion”. No ap ples falling from trees were in volved. It wouldn’t be the last in this vein



ei ther: when Eilen berg and Mac Lane started cat e gory the ory, they were struck by

the sim i lar ity of par tic u lar re sults be tween two very diff er ent branches of math e‐ 

mat ics, and de cided to get to the bot tom of it.

Card board squares and rub ber bands

There are many ways – fi nally – to pre sent the no tion of a group, with vary ing de‐ 

grees of ap peal to phys i cal in tu ition. The French mid dle-school ers pre sented with a

Bour baki-style text book were given none at all – a per func tory re mark that pow ers

of ten, when mul ti plied, yield other pow ers of ten, was all the “mo ti va tion” they

were going to get. This was far re moved from Mac Lane’s ap proach, since in “A

Sur vey of Mod ern Al ge bra” with Birk hoff he stresses that “the ab stract con cepts all

arise from the analy sis of con crete sit u a tions”. Ac cord ingly, the idea of sym me try

that finds its ex pres sion in a group was il lus trated by an ap peal to “imag ine a card‐ 

board square laid on a plane” and later “a rub ber band held in a straight line”. On

the as sump tion that pro gram mers are less ac cus tomed to ar gu ments about card‐ 

board squares and rub ber bands, let’s go with a diff er ent ap proach, much more

com mon in soft ware: the idea of a pat tern. Nat u rally it’s a key no tion in math e‐ 

mat ics as well: William Thurston once said that the clos est he could come to a de f‐ 

i n i tion of math e mat ics it self was “the the ory of for mal pat terns”.

The sim ple laws that de fine a group eff ec tively de scribe an al ge braic pat tern. One

diff er ence with pro gram ming is that there you might say that some thing “matches

the group pat tern”. Math e mati cians, who tend to cut to the chase, say that any‐ 

thing match ing that pat tern is a group.

Thus a group is a set  and an op er a tion  which match a cer tain pat tern, that of

the so-called group ax ioms. Here we can roughly fol low wikipedia. Whereas the

Bour baki-in flu enced school text rig or ously de fined in ter me di ate con cepts such as

re la tion, we can use a short cut fa mil iar to pro gram mers:  is a bi nary op er a tion on 

, i.e. com bines any two el e ments of  to pro duce a third, still in  (this takes

care of the first axiom of clo sure).

-  is as so cia tive (for all ,  and  in , )

- a spe cial el e ment of , known as the iden tity el e ment, is such that the fol low ing

equa tions hold for all a in : 

- every el e ment a of  has an in verse , such that 

G ∙

∙

G G G

∙ a b c G (a ∙ b) ∙ c = a ∙ (b ∙ c)

G

G e ∙ a = a ∙ e = a

G a−1 a ∙ a−1 = a−1 ∙ a = e



And that’s it... enough to de fine a fun da men tal struc ture that, as noted ear lier,

“ap pear[s] through out math e mat ics in many diff er ent guises”. It’s a kind of self-

con tained world with a par tic u larly well-be haved way of com bin ing el e ments. A

sim ple ex am ple is , the group of in te gers under ad di tion: you can add any two

in te gers to pro duce a third, ad di tion being as so cia tive; and the “in verse” of any in‐ 

te ger  is , such that  added to  yields the “iden tity el e ment” zero. The key

to the group’s sim plic ity is the “struc tural” axiom of as so cia tiv ity: when com bin ing

mul ti ple el e ments, this takes what pro gram mers might think of as a tree struc ture

and flat tens it out into a sim ple chain: no paren the ses are needed. You won’t find a

group “under sub trac tion”, be cause sub trac tion isn’t as so cia tive:  is not

the same as . As so cia tiv ity is often men tioned in the same breath as

com mu ta tiv ity, an even sim pler prop erty where operands can be ex changed: 

 that holds for any , . But groups are not nec es sar ily com mu ta tive, and

when they are, they’re known as abelian (a nod to Abel).

The ab stract na ture of the group can be seen in the va ri ety be tween sim ple ex am‐ 

ples. The one given above is of an in fi nite set of num bers  under ad di tion, but

you could also have a fi nite set of com plex num bers (e.g. the 5th roots of unity)

under mul ti pli ca tion, or some thing else en tirely. In fact the most com mon groups

are not sets of num bers com bined arith meti cally but sets of func tions com bined in

the most straight for ward way: com po si tion. It’s here that we can see that her alded

link with sym me try, and that we get closer to both cat e gory the ory and pro gram‐ 

ming. And here Mac Lane and Birk hoff’s card board square ex am ple isn’t so bad

after all: imag in ing such a square “laid on a plane with fixed axes, so that the cen‐ 

ter of the square falls on the ori gin of the co or di nates, and one side is hor i zon tal”,

the sym me try is il lus trated through move ments by which the square is “car ried into

it self”: namely ro ta tions (of 0, 90, 180 and 270 de grees) and re flec tions (about the

hor i zon tal, ver ti cal and both di ag o nal axes). An “al ge bra of sym me tries” fol lows

from being able to “mul ti ply two mo tions by per form ing them in suc ces sion”, with

the same net eff ect as one of the basic mo tions.

In view ing groups (and later, cat e gories) in terms of al ge braic pat terns, how far re‐ 

moved are we from the kinds of pat terns we might typ i cally see in pro gram ming?

There also the use ful ness of find ing pat terns is widely ac knowl edged, both be cause

it saves work and be cause it usu ally points to some thing mean ing ful. Could you

then by pass ab stract math e mat ics en tirely and view things like mon ads strictly in

terms of soft ware pat terns? Per haps. But in terms of use ful ness there are pat terns,

and then there are pat terns. On a hot clear day you might want to know where in

a park was likely to be shady: if you lim ited your self to ob serv ing the chang ing

(Z, +)

x −x x −x

(7 − 4) − 3

7 − (4 − 3)

a ∙ b = b ∙ a a b

(Z)



shad ows of trees, build ings or what have you on the ground you could cer tainly find

pat terns emerg ing; but the more fun da men tal one is else where: the move ment of

the sun in the sky – and it’s a far sim pler one to boot. Groups can de scribe in sim‐ 

ple terms the no tion of pat tern it self, in its com mon vi sual sense of stripes, polka

dots, etc. The basic pat terns of cat e gory the ory are so wide spread that they give a

way to re late seem ingly un con nected do mains through out math e mat ics. With

groups and cat e gories, you might find your self con tem plat ing the deep struc ture to

be found within na ture – and maybe even agree with the ob ser va tion “in the end,

there’s noth ing but sym me try”. With the dec o ra tor pat tern? Not so much.

Not equal, but the same

Hav ing de fined the self-con tained, well-be haved struc tures known as groups, they

be come “math e mat i cal ob jects” along with num bers, vec tors, func tions, you name

it. You can now treat them as ob jects, and in par tic u lar look at how they re late to

each other. This is where the term “ho mo mor phism” comes in – yet al most in the

same breath we should men tion the very sim i lar term “iso mor phism”. They have vir‐ 

tu ally the same Greek et y mol ogy (“same shape” ver sus “iden ti cal shape”), with an

iso mor phism being the “ideal” ver sion of a ho mo mor phism. In gen eral the most

basic re la tion ship be tween sim ple math e mat i cal ob jects such as num bers is equal ity

– even though it can some times be sur pris ingly hard to de fine. The most fun da‐ 

men tal re la tion ship be tween groups is how ever some thing deeper: not that they are

equal, but they are struc turally the same, i.e. iso mor phic. It’s a fun da men tal con‐ 

cept in math e mat ics, and gives the lie to the often wide spread im pres sion that

math e mat ics aims to com pli cate things: the aim here is to sim plify, some times dra‐ 

mat i cally, and to show that two struc tures with pos si bly very diff er ent ap pear ances

are, for all in tents and pur poses, the same. If you paint a car bright yel low you’ll

have changed its ap pear ance (prob a bly), but you won’t have changed any thing fun‐ 

da men tal about the car. That two groups are iso mor phic tells us that the only dif‐ 

fer ence is the paint job, and it’s of no con se quence.

For groups to be iso mor phic we need to have an iso mor phism be tween them, which

is a bi jec tion (one-to-one map ping)  be tween the two un der ly ing sets with one

sim ple prop erty: if  and  are the groups, then for any  in , 

This min i mal ist struc tural axiom, re call ing some what the as so cia tiv ity axiom of the

group, is enough to guar an tee that the struc ture of  is faith fully repli cated

by . For in stance the iden tity el e ment  in  is mapped to the iden tity el e‐ 

F

(G1, ∙) (G2, ∗) a, b G1

F(a ∙ b) = F(a) ∗ F(b)

(G1, ∙)

(G2, ∗) e1 G1



ment  in  such that , and from there you can eas ily show that 

be haves as the iden tity el e ment in , i.e. does noth ing. As an ex am ple of an iso‐ 

mor phism, con sider , i.e. the real num bers under ad di tion, and , i.e.

the strictly pos i tive real num bers under mul ti pli ca tion. The first group is very sim i‐ 

lar to the in te gers under ad di tion that we saw ear lier. In the sec ond group the iden‐ 

tity el e ment is now the real num ber , since  is the “do noth ing” el e ment for mul‐ 

ti pli ca tion. In this case the ex po nen tial func tion is an iso mor phism, since it’s a bi‐ 

jec tion be tween  and  such that . Through ex po nen ti a tion, a

struc ture in volv ing ad di tion has mor phed into an en tirely equiv a lent one in volv ing

mul ti pli ca tion (which you could re vert using a log a rithm). In pass ing this ex am ple

sug gests some kind of fun da men tal sym met ric re la tion ship be tween sum and prod‐ 

uct, one that cat e gory the ory will state very clearly and sim ply.

This kind of deep struc tural equiv a lence is not re stricted to groups of num bers

under arith metic op er a tions. In com put ing a strik ing il lus tra tion is the so-called

Curry-Howard iso mor phism, a full equiv a lence be tween seem ingly vastly diff er ent

areas that took decades to spot: math e mat i cal proofs and com puter pro grams.

With a ho mo mor phism we’re no longer in the “ideal” ter ri tory of the iso mor phism,

be cause a ho mo mor phism is not guar an teed to be a bi jec tion, in which case it

can’t be in verted. For in stance, in stead of just the iden tity el e ment e1, sev eral el e‐ 

ments of  (the so-called “ker nel”) could map to the iden tity el e ment  of .

But cru cially the same basic struc tural axiom holds:  for any 

 in . This guar an tees that a ho mo mor phism broadly pre serves the group’s

struc ture: you may not be able to re vert from  to , but you still know that it

be haves in much the same way.

A stan dard con struc tion

The con nec tion with mon ads? A monad pro vides the means for the “stan dard con‐ 

struc tion”, as Gode ment orig i nally called it, of... a ho mo mor phism. A par tic u lar ho‐ 

mo mor phism, and one not be tween groups but be tween cat e gories (called a func‐ 

tor), but which sat is fies the exact same axiom. We’re still look ing for such a func‐ 

tion , not nec es sar ily in vert ible as is an iso mor phism, but one whose fun da men tal

char ac ter is tic is that it pre serves struc ture. And it turns out that the monad it self,

this means of con struct ing the end prod uct of the ho mo mor phism, can be viewed

as some thing which is nearly a group: a monoid (the diff er ence being that in a

monoid el e ments don’t nec es sar ily have in verses, not un like the dis tinc tion be tween

ho mo mor phism and iso mor phism).

e2 G2 e2 = F(e1) e2

G2

(R, +) (R+∗, ×)

1 1

R R+∗ e(a + b) = ea ∗ eb

G1 e2 G2

F(a ∙ b) = F(a) ∗ F(b)

a, b G1

G2 G1

F



In com put ing we’ll be look ing at struc tures – not quite groups, but sim i lar – made

up of func tions that are com bined straight for wardly through com po si tion. Ho mo‐ 

mor phisms be tween such struc tures can map func tions to new ones in a great va ri‐ 

ety of ways, but al ways such that over all be hav ior is pre served: the new func tions

in ter act with each other in much the same fash ion as the orig i nal ones. An other

way of say ing that a ho mo mor phism pre serves struc ture is that it “doesn’t in ter fere”

with the orig i nal struc ture. You can begin to get a sense of why in soft ware mon‐ 

ads are often as so ci ated with “ex tend ing” a type: one route to pro duc ing new func‐ 

tions with the same in ter ac tions as the old is to embed them in some thing larger,

to add un re lated be hav ior in a “new di men sion”. If your orig i nal func tions yielded

in te gers, the ones pro duced by ho mo mor phism might yield pairs of in te gers, with

the orig i nal value “em bed ded” as one of the val ues of the pair. But there are other

types of ho mo mor phism, for ex am ple ones which in stead of adding di men sions are

“for get ful” of them.

Groups – or at least the re lated “semi groups” – even make a di rect ap pear ance in

prac ti cal com put ing, as em bod ied by that decades-old poster child for effi  ciency,

C++: Alexan der Stepanov “re al ized that the abil ity to add num bers in par al lel de‐ 

pends on the fact that ad di tion is as so cia tive... In other words... that a par al lel re‐ 

duc tion al go rithm is as so ci ated with a semi group struc ture type. That is the fun da‐ 

men tal point: al go rithms are de fined on al ge braic struc tures.” The re sult was the

Stan dard Tem plate Li brary (STL). For Bjarne Strous trup this quest for ”‘the most

gen eral and most effi  cient code’ based on a rig or ous math e mat i cal foun da tion” re‐ 

sulted in “un sur passed flex i bil ity and – sur pris ingly – per for mance.”

A gen er al ized group

Nearly two cen turies after Ga lois’ work, has group the ory run its course, or fallen

out of favor? Hardly. Where the Er lan gen Pro gram led by Felix Klein in the late

nine teenth cen tury had sought to char ac ter ize var i ous geome tries – once Eu clid ean

geom e try had been knocked off its pedestal as the one true geom e try – no tably in

terms of trans for ma tion groups, the mod ern Lang lands Pro gram is an even more

vast group-re lated un der tak ing: Peter Sar nak calls it “one of the great in sights into

twen ti eth-cen tury math e mat ics... a beau ti ful syn the sis of the the ory of num bers

and sym me try – the the ory of groups – specifi  cally Lie groups”. Make that twenty-

first-cen tury math e mat ics as well, as con firmed by the 2018 Abel Prize awarded to

Robert Lang lands for his “vi sion ary pro gram con nect ing rep re sen ta tion the ory to

num ber the ory.” Lie groups es sen tially de scribe con tin u ous sym me try, of the sort



given by ro ta tions through any angle, as op posed to the dis crete ones we con sid‐ 

ered ear lier which sim ply per muted a hand ful of ver tices. So-called rep re sen ta tions

of groups in a sense make them more con crete, by find ing equiv a lent (iso mor phic)

groups that are in eff ect ma tri ces under mul ti pli ca tion. It’s the ap proach Weyl had

used to apply group the ory to quan tum me chan ics. And it played an im por tant role

in fi nally prov ing Fer mat’s Last The o rem, more than 350 years after it was con jec‐ 

tured, as ev i denced by the title of the 1993 lec ture in which An drew Wiles an‐ 

nounced his proof: “Mod u lar Forms, El lip tic Curves and Ga lois Rep re sen ta tions”. A

cur sory look at the de scrip tions of the re search by the 2018 Fields medal ists again

yields ref er ences to “Ga lois Rep re sen ta tions” and “rep re sen ta tion the ory”. If Mac

Lane could muse in the 1950s that “group the ory was due for a re vival”, it’s hard to

think any one would do so today.

And cat e gory the ory? As Pierre Cartier and no doubt many oth ers have pointed

out, it “didn’t ap pear in a vac uum”. Group the ory was an es sen tial part of the

back drop to its de vel op ment. Eilen berg & Mac Lane’s sem i nal 1942 paper (pub‐ 

lished in 1945), “Gen eral The ory of Nat ural Equiv a lences”, may start off with an ex‐ 

am ple in volv ing vec tor spaces, but groups and ho mo mor phisms are the ex am ples

men tioned within the de fi  n i tion of a cat e gory it self, help ing the reader make a new

ab stract the ory more “con crete”. Their next paper was called “Nat ural Iso mor‐ 

phisms in Group The ory”. And there’s also the small mat ter that a cat e gory is... a

gen er al ized group.

So groups and ho mo mor phisms are fun da men tal, and by no means out dated con‐ 

cepts, teach able at an early age, which can elicit a ring of fa mil iar ity when ap‐ 

proach ing a very ab stract sub ject for the first time. At this point you might rea son‐ 

ably be tempted to ask: why aren’t they sys tem at i cally taught first? Now there’s a

ques tion... To take an ex am ple from an other area of math e mat ics: when Hilbert, in

Mac Lane’s words, “ex tracted the for mu la tion of the first order pred i cate cal cu lus

from the pedan tic morass of ‘Prin cipia Math e mat ica’ ”, Rus sell and White head’s

trea tise on logic, he pre sented the re sults in a grad ual, step-by-step style. His text‐ 

book pro ceeds from sim ple pred i cate logic to first-order logic (with quan ti fiers ex‐ 

press ing the no tions “some” and “all”) and fi nally higher-order logic, which is the

sort he thought was ul ti mately nec es sary. By con trast, ex plain ing cat e gory the ory

with out the step ping stone of groups feels “sec ond-order” from the get-go.

You can’t help but won der whether this ap proach was orig i nally in flu enced by ex‐ 

ter nal con sid er a tions, and then be came habit. With the caveat that “most prac tic‐ 

ing math e mati cians see no need for the foun da tions of their sub ject” (Lam‐



bek/Scott), it seems worth men tion ing that set the ory and cat e gory the ory can be

viewed as com pet ing foun da tions for all of math e mat ics. Even if you don’t agree

with Pythago ras that “every thing is math e mat ics”, those are some brag ging rights.

Set the ory ex pressed in first-order logic is the tra di tional choice – you can de fine

nat ural num bers as nested sets of the empty set, and func tions as sets of or dered

pairs, pairs which in turn are de fined in terms of sets... you get the pic ture. But

there’s a case to be made for func tions being more ap pro pri ate build ing blocks

than sets, and cat e gory the ory a bet ter foun da tion than set the ory. Awodey adds

type the ory to the list of con tenders, and while ad mit ting that all three are “math e‐ 

mat i cally equiv a lent” and have their own ad van tages and short com ings, gen er ally

seems to feel that cat e gory the ory has a “struc tural ap proach” that is “more sta ble,

more ro bust, [and] more in vari ant” than the oth ers. Mac Lane had once con ceded

that “there is as yet no sim ple and ad e quate way of con cep tu ally or ga niz ing all of

Math e mat ics”. On a less diplo matic day he pre sented a lec ture with the title “Set

the ory is ob so lete”.

Non-math e mat i cal con sid er a tions had cer tainly played a role in what re mains a sig‐ 

nifi  cant missed op por tu nity, and one which surely slowed down the gen eral ac cep‐ 

tance of cat e gory the ory: its ab sence from Bour baki’s tomes. This de spite Bour‐

baki’s over rid ing em pha sis on the idea of struc ture, in line with Dieudonné’s ob ser‐ 

va tion that “since about 1840 the study of spe cific math e mat i cal ob jects has been

re placed more and more by the study of math e mat i cal struc tures”. Mac Lane ob‐ 

served that his one time at tempts to win over its mem bers were ham pered by a

“com mand of the French lan guage... in ad e quate to the task of per sua sion”. He does

not mince his words about the re sult: “The offi  cial Bour baki dis cus sion of math e‐ 

mat i cal struc ture... is per haps the ugli est piece of writ ing to have come from Bour‐ 

baki’s pen. No body else makes much use of this, and Bour baki... was too con ser v a‐ 

tive to rec og nize other bet ter de scrip tions of struc ture when they arose.” He may

also have men tioned the “cold, hard fact” that cat e gory the ory was not in vented in

France. How did Bour baki miss the boat on this one? While it’s not in con ceiv able

that a “made in France” label would have led to a warmer re cep tion, Bour baki’s

strongest in flu ence was after all (ar guably) that of David Hilbert. As Cartier tells it,

most mem bers were not only fa mil iar with cat e gory the ory but used it reg u larly, to

say noth ing of Eilen berg who had been a mem ber since 1950. Grothen dieck’s sug‐ 

ges tion that they re work the ex ist ing tomes to in cor po rate cat e gory the ory seems

to have foundered on the ob jec tions of a cou ple of mem bers, par tic u larly

Dieudonné whose role as in dus tri ous scribe gave his opin ions weight. As a con se‐ 

quence, adop tion in France was slower than it would have been. Fast-for ward a few

decades though and the name OCaml de rives from the “Cat e gor i cal Ab stract Ma‐ 



chine”. And in a move which you might sup pose will be fol lowed else where, the

term “group ho mo mor phism” has been sup planted there by “group mor phism”, a

clear nod to cat e gory the ory. What ever the his tor i cal mis steps, there is no rea son at

all to some how op pose groups and cat e gories, com ple men tary and piv otal ab strac‐

tions.

That said... there’s a limit to the amount of in sight you’re going to get about mon‐ 

ads from the no tions of group and ho mo mor phism alone. There might after all be a

case for pick ing up a few rudi ments of cat e gory the ory. What the heck.

*

The right gen er al ity

The one char ac ter is tic of cat e gory the ory fa mil iar to most is its high level of ab‐ 

strac tion. Tom Le in ster calls it “a bird’s eye view of math e mat ics”. It jibes with a

cer tain view of math e mati cians, who, as Feyn man put it some what schemat i cally in

a lec ture, “like to make their rea son ing as gen eral as pos si ble. If I say to them, ‘I

want to talk about or di nary three di men sional space’, they say ‘If you have a space

of n di men sions, then here are the the o rems’. ‘But I only want the case 3’, ‘Well,

sub sti tute n=3.’ !” This con trasts with the physi cist, who “is al ways in ter ested in

the spe cial case” and “never in ter ested in the gen eral case.” But Mac Lane would

not have rec og nized such a char ac ter i za tion: for him, “good gen eral the ory does not

search for the max i mum gen er al ity, but for the right gen er al ity.” When does added

gen er al ity yield di min ish ing re turns? He cites a tech ni cal ex am ple from Bour baki: a

clumsy uni ver sal con struc tion that ac co mo dated “the ideas of mul ti lin ear al ge bra

that were im por tant to French Math e mat i cal tra di tions”. We could also cite a more

mod ern ex am ple: the mus tard watch. Pro posed by an alter ego of Jean-Yves Gi‐ 

rard, this “gen er al i sa tion of the con cepts of watch and of mus tard pot” does lead to

some in ter est ing the o rems (“a mus tard watch with no mus tard in it is at least as

pre cise as an or di nary one”) and asks the ob vi ous ques tions (“what is the point of

know ing [the] time if you can not get mus tard?” – in deed), but it’s not quite the

right gen er al ity. Cat e gory the ory is the right gen er al ity in terms of being ap plic a ble

across math e mat ics; the prob lem with learn ing it is in being pre sented with that

gen er al ity right away.

That a field with as wide as scope as cat e gory the ory should have its roots in the

com ing to gether of sep a rate branches of math e mat ics is per haps not sur pris ing.

One of them of course was ab stract al ge bra. Groups had now been com ple mented



no tably with rings and fields, where an other op er a tion is added – typ i cally the two

op er a tions are now thought of as gen er al iz ing ad di tion and mul ti pli ca tion. Un like

rings, fields man date the ex is tence of in verses for mul ti pli ca tion, i.e. di vi sion, ex‐ 

cept for zero – and this stip u la tion of such a spe cial case, built into the very de fi  n i‐ 

tion of a field, is often where things get in ter est ing. You could stick to in te gers ( )

for a ring, but for a field would have to move on to some thing like ra tio nal ( ) or

real ( ) num bers. The de vel op ment of the the ory of these struc tures was being led

by Emmy Noe ther at Goet tin gen. (Hilbert had ar gued for her in clu sion on the fac‐ 

ulty, since he did “not see that the sex of the can di date is an ar gu ment against

[it]... After all, the Sen ate is not a bath house”; and when there re mained ob jec tions

he arranged for lec tures an nounced as his to be de liv ered by her in stead.) Word of

these de vel op ments reached Mac Lane via Oys tein Ore, one of Noe ther’s stu dents

who was now teach ing group the ory at Yale. Mac Lane then “dis cov ered the de vel‐ 

op ing ideas of mod ern ab stract al ge bra”, adding that “the work of Emmy Noe ther

and her suc ces sors in di cated to me that there were brand-new ideas to be found in

math e mat ics”.

An other branch of math e mat ics in the mix was topol ogy. It shares with ab stract al‐ 

ge bra a cer tain qual ity of cut ting to the es sen tial – the stan dard joke is that a

topol o gist can’t tell a coff ee mug from a donut: in this “rub ber sheet geom e try”,

same ness de pends on whether you can con tin u ously de form one shape into an other,

and their com mon basic prop erty of “hav ing a hole” is what re mains when you do

this. Of course, if such vi su ally dis tinct ob jects are “the same” (and yes, this does

en tail a no tion of iso mor phism, a “topo log i cal iso mor phism” known as a home o mor‐ 

phism), then find ing ones that are gen uinely diff er ent can lead to some un usual

shapes in deed... one of which had a di rect role in the in cep tion of cat e gory the ory.

What’s more, with a sim i lar focus on what ac tu ally mat ters – struc ture – and dis re‐ 

gard for what doesn’t – ap pear ance –, ab stract al ge bra and topol ogy were a nat ural

fit. As early as 1895 Poin caré had brought them to gether with the no tion of ho mo‐ 

topy, which would even tu ally allow the in sights of group the ory to be ap plied to

topol ogy. “Al ge braic topol ogy” was being de vel oped in earnest at Prince ton in the

1930s when Feyn man came into con tact with it: “al though the math e mati cians

thought their topol ogy the o rems were coun ter in tu itive, they weren’t re ally as diffi ‐ 

cult as they looked... Paul Olum... tried to teach me math e mat ics. He got me up

to ho mo topy groups, and at that point I gave up.” (Feyn man’s in ven tion of path

in te grals has been known to per plex math e mati cians.) This long his tory hasn’t pre‐ 

vented ho mo topy from il lus trat ing yet again that there are “brand-new ideas to be

found in math e mat ics”, in the shape of ho mo topy type the ory, pro posed by Vo‐ 

evod sky in 2013. With it an other con tender for the foun da tions of math e mat ics has
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ap peared, one with sev eral ap peal ing fea tures in terms of com putabil ity, and at its

heart an axiom of strik ing sim plic ity (the uni va lence axiom), that im plies no less

than that “iso mor phic struc tures are equal”. There is no paint job after all.

A co in ci dence that wasn’t

Cat e gory the ory may have been about a com ing to gether of math e mat i cal

branches, but it was also about a meet ing of math e mati cians who struck up a fruit‐ 

ful part ner ship. Samuel Eilen berg shared with Saun ders Mac Lane a no-non sense

per son al ity and was known for an “in sis tence on get ting to the bot tom of things”.

Hyman Bass de scribed him as “pre em i nently a for mal ist. He fit squarely into the

tra di tion of Hilbert, Emil Artin, Emmy Noe ther, and Bour baki.” He con tin ues:

“Com plex ity and opaque ness were, for him, signs of in suffi  cient un der stand ing”.

While Mac Lane had writ ten a dis ser ta tion on logic, in ad di tion to study ing ab‐ 

stract al ge bra and some topol ogy, Eilen berg had be come an ex pert in al ge braic

topol ogy. It was he who brought to the at ten tion of Mac Lane a re mark able sim i‐ 

lar ity be tween a re sult Mac Lane had pre sented in a lec ture on group ex ten sions,

and a re sult in topol ogy re lat ing to a “p-adic so le noid”. Here is the de scrip tion of

said so le noid, as given by Mac Lane: “In side a torus , wind an other torus  p-

times, then an other torus  p-times in side , and so on...” The sim i lar ity of these

re sults from sep a rate math e mat i cal branches was like a red rag to a bull. “The co‐ 

in ci dence was highly mys te ri ous. Why in the world did a group of abelian group ex‐ 

ten sions come up in ho mol ogy? We stayed up all night try ing to find out ‘why.’

Sammy wanted to get to the bot tom of this co in ci dence.”

How do you ap proach the ba sics of cat e gory the ory? Per haps you agree with Abel

that the right way is in “study ing the mas ters, not their pupils”. If so Mac Lane’s

stan dard, “Cat e gories for the Work ing Math e mati cian”, cer tainly qual i fies, how ever

it calls on a breadth and depth of math e mat i cal knowl edge that pro gram mers typ i‐ 

cally don’t pos sess. The first sen tence of Chap ter 1 sets the tone: the cat e gory ax‐ 

ioms will be given “with out using any set the ory”. If this au tonomous ap proach to

es tab lish ing cat e gory the ory cer tainly makes sense from Mac Lane’s point of view,

it doesn’t nec es sar ily suit ours, and that’s be fore you con sider that the ini tial con‐ 

cepts are those of “meta graph” and “meta cat e gory”. If any thing you’re bet ter off

read ing the Eilen berg & Mac Lane’s orig i nal de fi  n i tion in their 1942 paper “Gen eral

The ory of Nat ural Equiv a lences”, which is sim pler and gen er ally tries to be more

help ful to the reader. It could be a sign of the times: pa pers of around that time

and ear lier – for ex am ple those of Alonzo Church – seem to try to pre sent con cepts
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in a way that will be more eas ily grasped, using non-tech ni cal lan guage where pos‐ 

si ble. Poin caré said that to un der stand a the ory, you had to see the rea sons for

which it was cho sen. Could you grasp it if pre sented “from the out set in its de fin i‐ 

tive shape... with out any trace of the fum bling steps that led up to it?” Not re ally,

it would then be a case of learn ing it by heart. Mac Lane does pro vide mo ti va tion

for the ax ioms he’s about to pre sent, but for the most part the the ory is de scribed

in its “de fin i tive shape”. In pass ing (more or less), he men tions that a cat e gory is a

kind of “gen er al ized monoid” (Awodey de scribes it as a “gen er al ized group”, which

is im plied); let’s use this de scrip tion not as a pass ing re mark but as a start ing

point.

The group that isn’t

A cat e gory loosens the re quire ments of a group in two im por tant ways. The first is

to do away with the stip u la tion that every el e ment has an in verse: as we’ve seen,

this yields a monoid. An ex am ple of a monoid some times given in com put ing is the

“free monoid” of strings under con cate na tion. You can con cate nate strings until the

cows come home, and you’ll still end up with an other string, but you can’t con‐ 

cate nate a “neg a tive string” that would take you back where you started, as you

could in a group. In gen eral, the “ideal” world of groups and iso mor phisms is re‐ 

placed with a (gen er ally) non-in vert ible one of monoids and ho mo mor phisms.

There’s a defi  nite di rec tion of travel in cat e gory the ory: it doesn’t do to ruffl e

feath ers by try ing to go the other way.

The sec ond and more in ter est ing change is that the bi nary op er a tion is no longer

guar an teed to pro duce a value: it be comes a par tial func tion. In a group, any two

el e ments can be com bined to pro duce a third; in a cat e gory two el e ments might be

able to be com bined, but then again they might not. This cor re sponds to our gen‐ 

eral in tu ition about func tions, which can only be com posed under cer tain con di‐ 

tions. (The func tions we’ve seen thus far in groups, such as ro ta tions and per mu ta‐ 

tions, are a spe cial, sim ple case, and can al ways be com bined.) A group mod i fied in

this way be comes a “groupoid”, and a monoid so mod i fied might have be come, as

some have pointed out, a... “monoidoid”. We know it as a cat e gory in stead.

Know ing that we are deal ing with a group gen er al ized in these two ways, let’s have

a look at the ax ioms for a cat e gory. A cat e gory con sists of:

a col lec tion of ob jects , , ,...

a col lec tion of ar rows , , ,...

A B C

f g h



 such that: 

each arrow  has as so ci ated ob jects known as do main and codomain, and we

write

(  is an arrow from do main  to codomain ) 

given ar rows  and , i.e. such that the codomain of  is also

the do main of , there is a com pos ite arrow

com po si tion is as so cia tive: for any ,  and , we have

for each ob ject A, there is an iden tity arrow  sat is fy ing the unit law:

for all ,

The first thing you no tice is the un usual ter mi nol ogy: ob jects and ar rows (also

called mor phisms). As math e mat i cal ter mi nol ogy goes, “ob ject” is as vague as

you’re going to get... they weren’t kid ding about the high level of gen er al ity. But

the terms al ready had a cer tain his tory: for nine teenth-cen tury lo gi cian Frege, as

Hei jenoort pointed out, “the on to log i cal fur ni ture of the uni verse di vides into ob‐ 

jects and func tions”. And Mac Lane notes else where that “at Goet tin gen a vec tor

was an arrow and a vec tor space con sisted of ob jects (vec tors)”. One diff er ence

with Frege’s neat di vide is that here, as we’ll see, ar rows them selves can be viewed

as ob jects.

No sand, just pure the ory

It also soon be comes clear that the (par tial) bi nary op er a tion of a cat e gory, in stead

of being rep re sented by var i ous sym bols as in a group, al ways seems to be , in

other words com po si tion. To sim plify mat ters fur ther, it is often treated as op‐ 

tional:  be comes sim ply , cor re spond ing to our usual no ta tion for a prod uct.

The use of the ter mi nol ogy “do main” and “codomain” adds to the im pres sion that

what we have is a gen er al ized group of func tions. But that would be too easy.

f

f : A → B

f A B

f : A → B g : B → C f

g

g ∘ f : A → C

f : A → B g : B → C h : C → D

h ∘ (g ∘ f) = (h ∘ g) ∘ f

1A : A → A

f : A → B

f ∘ 1A = f = 1B ∘ f

∘

g ∘ f gf



Dana Scott sum ma rizes it this way: “What we are prob a bly seek ing is a ‘purer’ view

of func tions: a the ory of func tions in them selves, not a the ory of func tions de rived

from sets. What, then, is a pure the ory of func tions? An swer: cat e gory the ory.” The

rea son the use of the word “func tion” is stu diously avoided, de spite in clud ing its ac‐ 

cou trements of do main and codomain, is that we are not look ing at func tions as

we know them. Where tra di tion de fined a func tion as a rule (e.g. ), and later

set the ory de fined it as set of pairs, cat e gory the ory takes a min i mal ist, hands-off

ap proach: a func tion is any thing – lit er ally any thing – that be haves with other

func tions in the way we ex pect. This means above all that their com po si tion, when

per mit ted, is as so cia tive. (You can ver ify that tra di tional func tions com pose as so‐ 

cia tively: it’s analagous to mak ing a chain out of three el e ments, where the two

joins in volved can be done in ei ther order.) The temp ta tion when being pre sented

with ex am ples that are not tra di tional func tions, such as in equal i ties or log i cal in‐ 

fer ences, is to think “fine, but be sides those out liers what we’re re ally talk ing about

is the usual func tions be tween sets”. It’s a temp ta tion that should be re sisted, be‐ 

cause no tions such as mon ads rely on non-tra di tional func tions. In sum mary a cat e‐ 

gory is not a gen er al ized group of func tions: it’s a gen er al ized group of gen er al ized

func tions.

This ax iomatic de fi  n i tion of ar rows, i.e. gen er al ized func tions, means our tra di tional

ap proach to han dling func tions is thrown out the win dow. Even when we are, in

fact, deal ing with plain old func tions be tween sets – and this is still the most com‐ 

mon case in com put ing – we won’t be con cerned with what the value of the func‐ 

tion is for any par tic u lar input, which takes some get ting used to. While at Goet‐ 

tin gen Mac Lane heard Weyl re mark that set the ory “con tains far too much sand”;

the same crit i cism can’t be lev elled at cat e gory the ory. If we stop to con sider ar bi‐ 

trary equa tions be tween func tions, say , we might be tempted to “solve” for 

using the in verse of  (if it ex ists) and say . But cat e gory the ory is loath to

re verse the di rec tions of ar rows. When it does, it re verses them all at once, thereby

pro duc ing a slew of “co”-el e ments – dual no tions of co prod uct, col imit... and the

like. (This leads to cat e gory the ory’s ver sion of a math e mat i cal food joke: what

does a cat e gory the o rist call a co conut?)

If your view of func tions is so de tached that you don’t con sider their value for any

par tic u lar input, what ex actly can you say about them? As it hap pens, quite a lot.

If you had a bee colony where for the sake of ar gu ment all bees had the same ap‐ 

pear ance, you could still work out which one was the queen bee from the in ter ac‐ 

tions with oth ers. Cat e gory the ory has the mak ings of a math e mat i cal who dun nit,

where the clues don’t seem like much but add up to some thing. The pref ace to “A

x → x2

fg = h f

g f = hg−1



Sur vey of Mod ern Al ge bra” held that “the most strik ing char ac ter is tic of mod ern al‐ 

ge bra is the de duc tion of the the o ret i cal prop er ties of such for mal sys tems as

groups, rings, fields, and vec tor spaces.” In turn Mac Lane and Eilen berg would ex‐ 

plore that which could be de duced from the ax ioms of a cat e gory.

One char ac ter is tic of the ar rows is that by and large they pre serve struc ture: in the

case of groups, this means ho mo mor phisms; for vec tor spaces, lin ear trans for ma‐ 

tions, etc. And what about the vanilla case of func tions be tween sets? Well there

too... in the sense that there’s no struc ture to pre serve. (These cat e gories are re‐ 

spec tively known as Grp, Vect and Set, il lus trat ing the cus tom of nam ing cat e‐ 

gories ac cord ing to the ob jects they con tain. Set is of most in ter est in pro gram‐ 

ming.) The no tion of a group fits nicely into the strat i fied world of cat e gories: it’s

sim ply a cat e gory with one ob ject. (So in a sense group the ory is sub sumed by cat‐ 

e gory the ory – but in prac tice that wouldn’t be the “right gen er al ity”.)

An other read ily ap par ent char ac ter is tic of cat e gory the ory is the heavy use of di a‐ 

grams, specifi  cally “com mu ta tive di a grams”. Whereas ad di tion was “com mu ta tive”

in the sense that you could “ex change” ar gu ments (i.e. ), here the di a‐ 

gram is com mu ta tive in the sense that you can “ex change” paths of com po si tion

that lead from the same start ing point to the same end point: they’re guar an teed

to be equal. When con sid er ing a very basic ex am ple of com mu ta tive di a gram

you may won der what you’ve gained over the sim ple equa tion , or for that

mat ter . After all Mac Lane em pha sizes that “it’s the ar rows that mat ter” –

not much seems to be added by vi su al iz ing the ob jects as well. And in the very

sim plest cases such as this one, you haven’t re ally gained any thing at all. How ever

such di a grams prove their worth with any thing more in volved, sum ma riz ing what is

es sen tially a se ries of equa tions (and of match ing do mains and codomains) vi su ally,

some times sug gest ing an an swer that can be sim ply “slot ted in”, or the out line of a

proof from what is known as “di a gram chas ing”.

We prob a bly shouldn’t be too sur prised that in a the ory where the no tion of a

func tion it self is given in terms of its (col lec tive) prop er ties, and not what it “is”,

a + b = b + a

g ∘ f = h

gf = h



other con cepts and de fi  n i tions fol low a sim i lar ap proach. They are often char ac ter‐ 

ized not by a con struc tion but by a “uni ver sal prop erty”. The lan guage used to do

so on the whole has a rel a tively lim ited, sweep ing vo cab u lary, mak ing full use of

“there ex ists” and “for all”. These are fa mil iar terms from first-order logic, where

they have well-known as so ci ated sym bols (  and , the in verted E and A due to

Peano and Gentzen, re spec tively). Here there’s a slight twist, in that ex is tence is

usu ally nar rowed down to “there is a unique” (often writ ten  in logic), spec i fy ing

an arrow that typ i cally “slots in” to a com mu ta tive di a gram. Again it may seem pe‐ 

cu liar that we are not asked to con sider the value of a func tion for any par tic u lar

input, but for some types of ar rows (in equal i ties, log i cal in fer ences), this no tion

doesn’t even apply. Where it does apply, no tably for func tions be tween sets, it’s not

that the no tion has sud denly be come unim por tant, rather that it’s typ i cally hid den

by the blan ket re quire ment of a com mu ta tive di a gram:  means that for all

suit able  (namely in the com mon do main of  and ), we have . So

quite a strin gent re quire ment after all. The fact that the vari able  has in eff ect

dis ap peared, be cause of the kind of sweep ing state ments that are being made, is

not with out prece dent: wit ness the com bi na tory logic of Schönfinkel and Curry.

There the clashes be tween vari able names that can occur in the lambda cal cu lus

are avoided be cause... there are no vari ables.

It may be that it’s the ar rows that mat ter, but to start off with such prop erty-

based de fi  n i tions tend to con cern ob jects in stead. Given a cat e gory , an ini tial ob‐ 

ject  has the prop erty that for any ob ject  in , there’s a unique arrow from  to

. Sim i larly a ter mi nal ob ject  is such that for any ob ject , there’s a unique

arrow from  to . For in stance in Set, there is only one ini tial ob ject (the empty

set), but a host of ter mi nal ob jects, i.e. every sin gle ton (one-el e ment) set. This

may not quite fit the queen bee anal ogy, but there’s still the idea that par tic u lar

ob jects are char ac ter ized rel a tively, “struc turally” by their con nec tions to oth ers, in

this case to all oth ers.

Prod ucts re vis ited

The cat e gor i cal de fi  n i tion of a prod uct takes the prop erty-based ap proach one step

fur ther. It’s what Awodey calls “prob a bly the ear li est ex am ple of cat e gory the ory

being used to de fine a fun da men tal math e mat i cal no tion.” The most il lus tra tive ex‐ 

am ple is prob a bly the prod uct of sets, in other words the carte sian prod uct:

 and 

∃ ∀

∃!

gf = h

x f h g(f(x)) = h(x)

x

C

0 A C 0

A 1 A

A 1

A × B = {(a, b)|a ∈ A b ∈ b}



(For fi nite sets this is of course closely re lated, through the set sizes, to the usual

no tion of the prod uct of two nat ural num bers.) If we imag ine  and  to be “axes”

con tain ing num bers, and  to be all the pos si ble pairs of “co or di nates” pro‐ 

duced in this way, we can see why the func tion  such that 

, which eff ec tively se lects the first co or di nate, is re ferred to as a pro jec‐ 

tion func tion (onto ) – and there is a sim i lar func tion  that pro jects onto .

This seem ingly in trin sic prop erty of a prod uct – that there is al ways a way to re‐ 

cover its orig i nal com po nent ob jects, through “pro jec tion” – hints at the (ad mit‐ 

tedly quite ab stract) de fi  n i tion of a prod uct that Mac Lane even tu ally set tled on.

This states that for a given cat e gory , the prod uct of ob jects  and  is an ob‐ 

ject , to gether with pro jec tion ar rows  and , that

sat isfy a cer tain uni ver sal prop erty: for any ob ject X in , and ar rows 

and , there is a unique arrow  (in di cated here and sim i larly

else where by a dashed line) that slots in to “make the di a gram com mute”:

In keep ing with the gen eral ap proach seen so far, there is no di rect con struc tion of

“the” prod uct of two ob jects: we sim ply know that a prod uct, if it ex ists, satisi fies

the given uni ver sal prop erty, which more or less says that pro jec tion works as we

would ex pect it to. It’s a lit tle bit like stat ing that a line through a given point is

par al lel to an other if it doesn’t in ter sect it. There’s a diff er ence, though, in that

you can’t prove that such a line is unique: this has to be stated by axiom, if in deed

we’re talk ing about Eu clid ean geom e try. Here you can show fairly straight for wardly

that prod ucts are unique “up to iso mor phism” (i.e. there ex ists an iso mor phism be‐ 

tween any two of them), which is often as good as you’re going to get in some‐ 

thing as struc tural as cat e gory the ory. The com mu ta tive di a gram has an other ad‐ 

van tage: by sim ply re vers ing the di rec tion of its ar rows you ar rive di rectly at the

char ac ter i za tion of a “co prod uct”, also known as a “cat e gor i cal sum” and ac cord‐ 

ingly de noted by ” ” in stead of ” ”. This re la tion ship be tween prod uct and sum

may re call the early ex am ple of a pair of iso mor phisms that trans formed a group

under mul ti pli ca tion into one under ad di tion, and back.

A B

A × B

π1 : A × B → A

π1(a, b) = a

A π2 B

C A B

A × B π1 : A × B → A π2 : A × B → B

C f : X → A

g : X → B u : X → A × B

+ ×



Prod ucts de fined in this way are note wor thy for an other rea son: they are tech ni cally

triples, and what’s more ones with a cer tain “shape”: a cen tral ob ject sand wiched

be tween two ar rows that in some sense can be seen as op po sites. This arrow-ob‐ 

ject-arrow for ma tion is in some ways a “dual” ver sion of the ob ject-arrow-ob ject

pat tern which is fun da men tal to cat e gory the ory. It’s by no means the last time

that this math e mat i cal shape will crop up: among many oth ers it char ac ter izes a

cer tain con struc tion known by the name “triple” until Mac Lane de cided to call it a

monad.

While prod ucts are often dis cussed early on in cat e gory the ory, they weren’t pro‐ 

posed by Mac Lane until 1950, nearly a decade after the ini tial paper which pre‐ 

sented what he and Eilen berg were ac tu ally in ter ested in: nat ural trans for ma tions.

As the story goes, the no tion of a cat e gory it self arose to de fine a func tor, which in

turn was nec es sary to de fine a nat ural trans for ma tion. It’s worth con sid er ing here

why this struck them as a par tic u larly im por tant con cept.

Trans for ma tions with out ar ti fice

Those math e mati cians who wish to “get to the bot tom of things” tend to give

short shrift to what they view as dis trac tions along the way. One ex am ple is com bi‐ 

na tory logic: Schönfinkel ar gues that “a vari able in a propo si tion of logic is, after

all, noth ing but a token that char ac ter izes cer tain ar gu ment places and op er a tors

as be long ing to gether; thus it has the sta tus of a mere aux il iary no tion that is re‐ 

ally in ap pro pri ate to the con stant, “eter nal” essence of the propo si tions of logic.” In

the same vein Mac Lane states that “a vec tor is geo met ri cal; it is an el e ment of a

vec tor space, de fined by suit able ax ioms... [it] is not an n-tuple of num bers until a

co or di nate sys tem has been cho sen. Any teacher and any text book which starts

with the idea that vec tors are n-tu ples is com mit ting a crime for which the proper

pun ish ment is ridicule. The n-tuple idea is not ‘eas ier,’ it is harder; it is not clearer,

it is more mis lead ing.” This meant that there was some thing un sat is fy ing to Mac

Lane about trans for ma tions of vec tor spaces that de pended on the “aux il iary no‐ 

tion” of co or di nates. In their sem i nal 1942 paper “Gen eral The ory of Nat ural Equiv‐ 

a lences”, he and Eilen berg begin by ex am in ing the iso mor phisms be tween a vec tor

space – i.e. a col lec tion of “ob jects (vec tors) which could be suit ably added and

mul ti plied by scalars” – and its dual. (Du al ity brings us to an other deep struc tural

no tion in math e mat ics, one that Michael Atiyah de fines as a prin ci ple that “gives

two diff er ent points of view of look ing at the same ob ject”. For in stance in pla nar

geom e try, the role of points and lines in a the o rem can some times re mark ably be



in ter changed to yield a “dual the o rem” de scrib ing a vi su ally very diff er ent con struc‐ 

tion, but on some level with the same ab stract struc ture.) Given a vec tor space ,

the dual space  con sisted of “all real val ued lin ear func tions t on ” – such as

dot prod ucts – which them selves could be ma nip u lated as vec tors.  and  were

iso mor phic, but the prob lem was the fol low ing: “such an iso mor phism can not be ex‐ 

hib ited until one chooses a defi  nite set of basis vec tors for , and fur ther more the

iso mor phism which re sults will diff er for diff er ent choices of this basis.”

It wasn’t until you took the process one step fur ther that the smoke cleared: for

the dual of the dual, or bid ual, , “one can ex hibit an iso mor phism be tween 

 and  with out using any spe cial basis in . This ex hi bi tion of the iso mor‐ 

phism  is ‘nat ural’ in that it is given si mul ta ne ously for all fi nite-di men‐ 

sional vec tor spaces .” They were ar riv ing at a pre cise de fi  n i tion of the term “nat‐ 

ural”, which as Emily Riehl notes, “had been used col lo qui ally by math e mati cians to

mean ‘de fined with out ar bi trary choices’ ”. There was, after all, a way to do with out

the ar ti fice of co or di nates to get at the heart of the mat ter.

The de fi  n i tion of a nat ural trans for ma tion is not that much more com plex than

that of a prod uct, but it’s a step up in terms of ab strac tion, as it in volves ar rows

be tween cat e gories. This is, to a point, some thing we’ve seen be fore: a group ho‐ 

mo mor phism trans forms one group (a par tic u lar kind of cat e gory) into an other. As

al luded to ear lier, the ar rows from one cat e gory to an other – nat u rally, struc ture-

pre serv ing – are known as func tors: Awodey de scribes a func tor early on as a ”‘ho‐ 

mo mor phism of cat e gories’ ”. A func tor  be tween cat e gories  and  maps ar rows

in a way that sat is fies the same struc tural axiom we saw for groups (with the slight

sim pli fi ca tion in no ta tion that the op er a tor in both  and  is as sumed to be com‐ 

po si tion, and writ ten . in both cases, even though it could tech ni cally diff er be‐ 

tween  and ): 

(It also pre serves the iden tity el e ment ( , but this can be shown for

group ho mo mor phisms as well.) Al though this map ping of ar rows is the essence of

the func tor, and cor re sponds to the map ping of set el e ments in a group ho mo mor‐ 

phism, a func tor is also con sid ered to map the arrow’s side kick ob jects: 

, and so “pre serves do mains and codomains”. So

far, there is lit tle to diff er en ti ate this “ho mo mor phism of cat e gories” from a group

ho mo mor phism. But a nat ural trans for ma tion will in tro duce a cru cial dis tinc tion in

the way it is used, in so doing blur ring the lines be tween lev els of ab strac tion. In

our first ex am ple of an iso mor phism, the group  was trans formed into 

L

T (L) L

L T (L)

L

T (T (L))

L T (T (L)) L

L ≡ T (T (L))

L

F C D

C D

C D

F(g ∘ f) = F(g) ∘ F(f)

F(1A) = 1FA)

F(f : A → B) = F(f) : F(A) → F(B)

(R, +)



 by the ex po nen tial func tion . There  ap peared clearly as some‐ 

thing “ex ter nal”, and served only to con vert one group of num bers into an other. By

con trast some of the power of cat e gory the ory can be seen in the way, via nat ural

trans for ma tions, it brazenly mixes func tors be tween cat e gories and ar rows within

cat e gories: they are all, in the end, (gen er al ized) func tions.

What, then, is a nat ural trans for ma tion? A “mor phism of func tors”. If you’re re flex‐ 

ively think ing of a set of func tor pairs, this isn’t “the right gen er al ity”. The do main

of a nat ural trans for ma tion is not a set, not even a sin gle ton: it’s sim ply a func tor.

The arrow we’re de scrib ing is a trans for ma tion from that sin gle func tor to an other.

But let’s con sider first some what more fa mil iar ter ri tory, the idea of map ping one

func tion to an other, as is known in com put ing by “higher-order func tion”. What

gen eral form might this map ping take, not in terms of some how sim ply list ing pairs

of func tions as input and out put but in pro vid ing the more tra di tional no tion of a

“rule”? An ex am ple would be the “diff er en tial op er a tor” which takes a func tion and

re turns its de riv a tive, often ac cord ing to a sim ple al ge braic recipe. But in the gen‐ 

eral spirit of cat e gory the ory, let’s stick to a con struc tion that uses its cen tral tool:

com po si tion. If you wanted to con vert a func tion  to a func tion 

 in this way, you would pre sum ably de fine the trans for ma tion  along the

lines of 

for some func tions  and  (“h prime”). You know some thing else for free: the

“plumb ing” has to work out. To con vert the do main ( ) and codomain ( ) of the

orig i nal func tion,  and  have to act in some sense as “adapters”, with 

and , yield ing a chain  that re sults in the de sired 

.

Let’s now have a look at the de fi  n i tion of a nat ural trans for ma tion. Given cat e‐ 

gories  and , and func tors  and  be tween those cat e gories, a nat ural trans‐ 

for ma tion i from  to  is a fam ily of ar rows  con tained in , but in dexed by

ob jects in . Thus to each -ob ject A cor re sponds one of these com po nent -ar‐ 

rows , with the fol low ing prop erty: for any -arrow , the

fol low ing di a gram com mutes:

(R+∗, ×) F(x) = ex F

f : A → B

g : A′ → B′ F

g = F(f) = h′ ∘ f ∘ h

h h′

A B

h h′ h : A′ → A

h′ : B → B′ A′ → A → B → B′

g : A′ → B′

C D F G

F G ηA D

C C D

ηA : F(A) → G(A) C f : A → B



As with the ear lier de fi  n i tion of a prod uct, this doesn’t “con struct” a nat ural trans‐ 

for ma tion, but states the prop erty it (or more pre cisely all of its com po nents) must

sat isfy if it ex ists. The de fi  n i tion as given il lus trates some thing note wor thy about a

nat ural trans for ma tion: it’s not a func tion in the tra di tional sense. The clue was in

the name, after all. It’s a col lec tion of func tions that, taken to gether, be have as ar‐ 

rows are ex pected to be have, above all by com pos ing as so cia tively with other sim i‐ 

lar, match ing ar rows. As it hap pens a nat ural trans for ma tion makes math e mat i cally

pre cise the no tion of a generic func tion in com put ing. If you’ve ever won dered

whether a generic func tion, with its type un de fined, is re ally a func tion: in the set-

the o retic sense it isn’t, but in terms of cat e gory the ory it is.

What though is that par tic u lar com mu ta tive di a gram ac tu ally say ing? How ex actly

is it trans form ing  into ? To get an idea of what it’s say ing, we may want to

look at what it’s al most say ing. What the di a gram gives us is the arrow equa tion 

. What it says with a lit tle artis tic li cense is that 

, which is es sen tially the map ping of  to , for a

given , that we are look ing for, one that fits the gen eral ex pected shape of trans‐ 

for ma tion through com po si tion. It would in fact say ex actly that if we knew that 

had an in verse, but we don’t. So cat e gory the ory does the next best thing, which is

to pin down the mean ing of  with out tak ing that final step of defin ing it ex‐ 

plic itly. It’s not al to gether un like hav ing an equa tion be tween real num bers 

and re frain ing from ex press ing  as , if you don’t know whether a has an in‐ 

verse (i.e. isn’t zero). The stolid two-and-two, rec tan gu lar sym me try of the com mu‐ 

ta tive di a gram can in fact nearly be seen as one-and-three, and with it an other

prod uct-like de fi  n i tion in terms of a “triple with op po sites”.

The com po nent ar rows of the nat ural trans for ma tion cut across the gen eral di rec‐ 

tion of travel of ar rows within , as they join their re spec tive start and end ob jects

(do main and codomain). They are in some sense “adapters” that ad just the var i ous 

-mapped ar rows to -mapped ones solely on the basis of their diff er ing end points.

There is a graph i cal in ter pre ta tion: Awodey likens the func tors from cat e gories 

F G

G(f) ∘ ηA = ηB ∘ F(f)

G(f) = ηB ∘ F(f) ∘ ηA
−1

F(f) G(f)

f

ηA

G(f)

ax = bc

x bc/a

D

F G

C



to  to “pic tures” of  in , and a nat ural trans for ma tion to a “cylin der” with a

pic ture at each end.

Let’s con sider a lit tle more closely the gen eral math e mat i cal shape of a triple

whose outer el e ments are in some sense op po sites. Of the many ex am ples which fit

this de scrip tion, there’s for in stance the no tion of con ju gacy: el e ments  and  of a

group  are con ju gates if there is an el e ment  in  such that  = . Trans‐ 

lated to lin ear al ge bra this be comes ma trix sim i lar ity: square ma tri ces  and  are

sim i lar if there’s a ma trix  such that . If ma trix mul ti pli ca tion were

com mu ta tive, we could switch the order of the operands and the outer el e ments

would sim ply can cel each other out. But it isn’t, sug gest ing that a di rec tion of

travel in such triples yields not equal ity but an ap prox i ma tion thereof. There’s a

hint of the shape in first order logic, where the uni ver sal ( ) and ex is ten sial ( )

quan ti fiers can be ex pressed in terms of one an other, in an ex ten sion of De Mor‐ 

gan’s laws: if  is a pred i cate, then  is equiv a lent to . E.H.

Moore, who had in flu enced Mac Lane while at Chicago (per suad ing him to study

at Goet tin gen), once said that “the ex is tence of analo gies be tween cen tral fea tures

of var i ous the o ries im plies the ex is tence of a gen eral ab stract the ory which un der‐ 

lies the par tic u lar the o ries and uni fies them with re spect to those cen tral fea tures.”

The gen eral ab stract the ory in ques tion turned out to be cat e gory the ory; and the

part of that the ory which best ex plains these sim i lar math e mat i cal shapes is that of

ad joint func tors.

Ad joint ness every where

With ad joints we are very close to the no tion of a monad: they weren’t dis cov ered,

by Daniel Kan, until 1956, pub lished in 1958, and Gode ment fol lowed up with his

“stan dard con struc tion” the same year. Awodey makes “the ad mit tedly provoca tive

claim that ad joint ness is a con cept of fun da men tal log i cal and math e mat i cal im por‐ 

tance that is not cap tured else where in math e mat ics”. Ac cord ing to Mac Lane, “the

slo gan is ‘Ad joint func tors arise every where’ ”. In fact we’ve al ready seen a major

ex am ple: the age-old log i cal quan ti fiers of “for all” and “there ex ists” were shown by

William Law vere to be, quite sim ply, ad joint func tors.

Nat ural trans for ma tions may have shown the power of mix ing ho mo mor phisms with

“or di nary” ar rows, but these ho mo mor phisms (func tors) were in the same di rec tion.

Ad joint func tors take us one step fur ther by using func tors in op po site di rec tions,

bind ing two cat e gories to gether as tightly as they can be bound, even if they are

quite diff er ent in na ture, par tic u larly where one has more struc ture than the other.

D C D

a b

G g G b gag−1

A B

P B = P −1AP

∀ ∃

P(x) ∀xP(x) ¬(∃x¬P(x))



It’s the math e mat i cal ver sion not of a one-way ticket, but of a “round trip”. Even if

you start and end in the same cat e gory, tran sit ing through an other leaves an un‐ 

mis tak able “trace”.

We begin again with cat e gories  and , and two func tors be tween them – ex cept

this time we’ll call them  and , for rea sons we’ll see shortly. With nat ural trans‐ 

for ma tions the di rec tion of travel was from  to : both func tors pointed this way,

and -ob jects in dexed -ar rows. The com mu ta tive di a gram that eff ec tively trans‐ 

formed one func tor into the other was then wholly within . In the case of ad joints

though every thing is in ter twined.  is still from  to , but  is in the op po site

di rec tion, from  to .

In stead of start ing with a sin gle ob ject in , an ad junc tion asks us to si mul ta ne‐ 

ously con sider ar bi trary ob jects  and D in  and in . Two fur ther ob jects sug‐ 

gest them selves: the im ages of these ob jects by the rel e vant func tor, i.e.  and 

 in  and , re spec tively. We now have two pairs of ob jects that can serve as

the end points of -ar rows and -ar rows: the ques tion is, what is the re la tion ship

be tween such ar rows? We’ll con sider two sep a rate ap proaches and de fi  n i tions.

In the first, we’ll use a con struc tion based on a uni ver sal prop erty. If we take an ar‐ 

bi trary -arrow be tween  and , can it be trans formed to a -arrow be tween 

 and D? In fact we’ll start the other way around, with a -arrow 

. The ob vi ous can di date of func tor  will take it to a -arrow  be tween 

 (or more sim ply ) and . But this won’t be of the form we’re

look ing for, i.e. , since the do mains don’t match. At the very least we

re quire a do main ad just ment – and this is where the “adapters” within nat ural

trans for ma tions come into play once more.

So we in tro duce a nat ural trans for ma tion  be tween “end o func tors”,

i.e. func tors that start and fin ish in the same cat e gory ( ), where here one is the

iden tity “do noth ing”  and the other is a round trip from  to  and back again.

Then an ad junc tion con sist ing of the triple , , and  sat is fies the fol low ing prop‐ 

erty: for any -ob ject , -ob ject D and -arrow , there’s a unique 

-arrow  such that , i.e. such that the fol low ing tri an gle

com mutes:

C D

F U

C D

C D

D

F C D U

D C

C

C C D

F(C)

U(D) D C

C D

C C U(D) D

F(C) D g : F(C) → D

U C U(g)

U(F(C)) UFC U(D)

f : C → U(D)

η : 1C → U ∘ F

C

1C C D

F U η
C C D C f : C → U(D)

D g : F(C) → D f = U(g) ∘ ηC



Cat e gories  and  don’t play sym met ric roles, and ac cord ingly there’s a no tion of

left and right for the func tors be tween them:  is the left ad joint to , and  is

the right ad joint to , writ ten . While  and  may go in op po site di rec‐ 

tions, they are not “true op po sites”. If they were exact in verses  would be the

iden tity func tor . In stead  and  are re lated by nat ural trans for ma tion ,

known as the unit of the ad junc tion, with its uni ver sal prop erty given above. (Re‐ 

verse all the ar rows and you get the counit . If you’re rusty on your

Greek let ters,  – “eta” – is roughly equiv a lent to “i”, as is iota, and could be taken

as em pha siz ing that unit is “like” iden tity.)

The sec ond de fi  n i tion of ad joints uses the no tion of “hom-set”, which al though de‐ 

rived from “ho mo mor phism” means sim ply the set of ar rows be tween two ob jects X

and Y in a cat e gory , writ ten ei ther  or . It states that an ad‐ 

junc tion is char ac ter ized by an iso mor phism  that is

nat ural in  and  – we can just take this to mean that it’s a bi jec tion “de fined

with out ar bi trary choices”.  is in fact de fined, for any  in ,  in  and 

, by . (This also means, tak ing the par tic u lar case of 

set to  and  set to , that , since  pre serves iden tity ar rows).

There is thus a one-to-one cor re spon dence be tween these par tic u lar -ar rows (from

 to ) and -ar rows (from  to ). This de fi  n i tion may ap pear as more

sym met ric than the first, but they’re equiv a lent, and there’s still the same no tion of

left and right. The bi jec tion can be writ ten 

and can also be pre sented as a com mu ta tive di a gram:

C D

F U U

F F ⊣ U F U

U ∘ F

1C 1C U ∘ F η

ε : F ∘ U → 1D

η

C Hom(X, Y ) C(X, Y )

φ : D(F(C), D) ≡ C(C, U(D))

C D

φ C C D D

g : FC → D φ(g) = U(g) ∘ ηC D

F(C) g 1FC ηC = φ(1FC) U

C

C U(D) D F(C) D

F(C) → D

C → U(D)



This may re call the rec tan gu lar com mu ta tive di a gram of a nat ural trans for ma tion,

but in stead of being wholly con tained within , it spans both cat e gories, start ing

with  in  and  in . And there is no need to squint to see a triple with “op po‐ 

sites” (or more pre cisely ad joints): the com mutable paths of the rec tan gle are not

two-and-two but one-and-three, i.e. if we name  the -arrow from  to  and 

 the -arrow from  to , then .

Such an in ter twin ing of cat e gories pro duces pow er ful re sults; it’s a kind of best at‐ 

tempt at sym me try in a sit u a tion which is in her ently asym met ric. Typ i cally cat e‐ 

gory  has more struc ture than cat e gory , and  is often a “for get ful func tor”,

which com monly “for gets” the struc ture of a group, ring, field etc by map ping it to

its un der ly ing set (ac cord ingly it’s often de noted as ). In the other di rec tion, 

often con structs “free” ob jects with struc ture, such as the free monoid of strings

seen ear lier, by using the el e ments of a set as gen er a tors, in the man ner of a basis

for a vec tor space. As an ex am ple we can take Set and Grp as the two cat e gories 

 and  (of sets and groups), with the for get ful func tor  map ping

each group to its un der ly ing set, and con versely the func tor  con‐ 

struct ing the free group  from a set . The un der ly ing set of this free group, 

, is the image of set  under the “round trip” : it’s such that the

unit  maps each el e ment of  to it self in . David Spi vak has an evoca‐ 

tive image for a very sim i lar ex am ple (he re places Grp with Mon, the cat e gory of

monoids). For him ad joint func tors are like “dic tio nar ies that trans late back and

forth be tween diff er ent cat e gories” that are not nec es sar ily “on the same con cep tual

level”. He asks us to con sider diff er ent lev els of lan guage, con trast ing baby talk

made up largely of re peated sounds with adult con ver sa tions where sounds are in‐ 

ter preted as words and sen tences. Trans lat ing the baby talk of Set in volves at‐ 

tempt ing to as sign a mean ing to it as words in the more struc tured Mon, but in

the other di rec tion the trans la tion yields merely sounds for which the mean ing has

been “for got ten”.

Mon ads, or higher struc ture by stealth

D

C C D D

f C C U(D)

g D F(C) D f = U ∘ g ∘ F

D C U

U F

C D U : Grp → Set

F : Set → Grp

F(X) X

S = UF(X) X U ∘ F

η : X → S X S



The strik ing thing about mon ads, hav ing looked at nat ural trans for ma tions and ad‐ 

junc tions, which both re late a pair of func tors be tween a pair of cat e gories, is that

we’re back down to a sin gle cat e gory ( ). We’re even back down to a sin gle func‐ 

tor ( ), nec es sar ily an end o func tor from  to . What we have be sides this is a

way of re lat ing  with it er a tions of it self, through two nat ural trans for ma tions that

are the op pos ing book ends of our triple, and a cou ple of sim ple equal i ties that

must be sat is fied. And yet this is enough to imply the ex is tence of a more struc‐ 

tured cat e gory , and an ad junc tion that binds it to . In this way “every monad

arises from an ad junc tion”. You might say it’s a bit like an in fant mouthing an ap‐ 

prox i ma tion to “ho mo topy type the ory” being a give away that there’s a world where

those sounds cor re spond to words and con cepts that make sense. So one way to

view mon ads is as an ad junc tion with a hid den, more ad vanced cat e gory: higher

struc ture by stealth. It also means that at tempt ing to re duce mon ads in pro gram‐ 

ming terms strictly to or di nary func tions be tween sets strains credulity: their defin‐ 

ing char ac ter is tic is the “trace” of that struc ture.

While it’s straight for ward to give the de fi  n i tion of a monad, the terms used and

over all struc ture make greater sense if we con sider once more those basic struc‐ 

tures: groups and monoids.

Groups and monoids are such fun da men tal pat terns that they begin to crop up

within cat e gories. This is par tic u larly the case for monoids, which cor re spond more

to the idea of a gen eral di rec tion of travel, where the ex is tence of in verses can’t be

guar an teed. When ever you have a means of com bin ing two math e mat i cal ob jects to

pro duce a third of the same na ture, the ques tion can be asked: is the process as so‐ 

cia tive, i.e. can such ob jects es sen tially be chained to gether? If all rel e vant ob jects

can be com bined in this way (and one of them is the “do noth ing” iden tity ob ject),

a monoid it is. And in a cat e gory the op por tu ni ties for com bi na tion abound – be‐ 

yond the com po si tion of ar rows that is its essence – par tic u larly where you have the

no tion of a prod uct of ob jects. The carte sian prod uct is a near miss when it comes

to form ing the back bone of a monoid, since it’s only as so cia tive up to iso mor phism

(the prod uct set  con tains el e ments of the form  as op posed to

 in . It does nonethe less qual ify as an in stance of a gen er al ized

prod uct , which diff ers from the prod uct de fined ear lier, and char ac ter izes so-

called “monoidal cat e gories” in which monoids are com mon. Set is one such cat e‐ 

gory.

You might think that the orig i nal, min i mal ist de fi  n i tion of a monoid hardly needed

re view ing; and that its de pic tion as “a cat e gory with one ob ject” was the final word

C

T C C

T

D C

A × (B × C) (a, (b, c))

((a, b), c) (A × B) × C)

⊗



on the mat ter. But just as there is a cat e gor i cal view of a prod uct, there is a more

ab stract view of a monoid it self. Where the prod uct was pred i cated on the ex is‐ 

tence of pro jec tion ar rows, the cat e gor i cal ap proach to defin ing a monoid is one

where hav ing cho sen a suit able no tion of ob ject prod uct, a bi nary op er a tor on an

ob ject M is an arrow from its “square” to it self. This arrow  (“mu”)

is thought of as defin ing “mul ti pli ca tion” on . The monoid  is com pleted

by a sec ond arrow , where  is as be fore a ter mi nal ob ject. The as so cia‐ 

tiv ity and iden tity equal i ties are then rep re sented by the fol low ing com mu ta tive di a‐ 

grams:

In Set, this is es sen tially the orig i nal de fi  n i tion via , with the cos metic dif‐ 

fer ence that el e ment  of set  has be come a mor phism  which picks one of the

mem bers of , an en tirely equiv a lent con struct of the iden tity as a “gen er al ized el‐ 

e ment”.

It’s with this in mind that we can give the de fi  n i tion of a monad on a cat e gory :

it’s a triple com prised of  

• an end o func tor   

• a unit nat ural trans for ma tion   

• a mul ti pli ca tion nat ural trans for ma tion   

such that the fol low ing di a grams com mute:

in other words such that 

μ : M × M → M

M (M, μ, η)

η : 1 → M 1

(M, ∗, e)

e M η
M

C

T : C → C

η : 1C → T

μ : T 2 → T

μ ∘ μT = μ ∘ Tμ



A monad (  thus has an un mis tak able over all struc tural sim i lar ity with the

cat e gor i cal de fi  n i tion of a monoid, with nat ural trans for ma tions η (the unit) play ing

the role of iden tity and μ act ing as mul ti pli ca tion. When viewed from a diff er ent

angle, i.e. as a struc ture within the cat e gory of end o func tors on , with mul ti pli ca‐ 

tion rep re sented by func tion com po si tion, it is a monoid. But it’s more use ful to

stick with the orig i nal point of view.

Note also that the idea of a bi nary op er a tor on a set  has been gen er al ized

to  where  is an end o func tor and  is its re peated ap pli ca tion, in stead

of the carte sian prod uct of a set by it self.

A typ i cal ex am ple in com put ing is the list monad, or free monoid monad (on ,

and im ply ing higher-struc ture cat e gory ). Here the end o func tor 

maps a set  to the set of fi nite lists of el e ments of . The unit (nat ural trans for‐ 

ma tion)  has com po nents  map ping each el e ment of  to the cor re‐ 

spond ing sin gle ton list. The mul ti pli ca tion  has com po nents  that

are con cate na tion func tions, flat ten ing a list of lists into a sin gle one.

Let’s briefly re view where the as so cia tiv ity and unit laws come from. We start by

de riv ing the “tri an gle iden ti ties” for a given ad junc tion  :  with unit 

 and counit . As be fore for any  ∈ , D ∈  and 

 we have  (the equiv a lent for the counit is that for any 

, . And as be fore we use the par tic u lar case of in ter de‐ 

pen dent val ues of  and  to de rive new equal i ties: just as set ting  to  and 

 to  yields , set ting  to  and  to  yields .

We can then see that  and , or

more con cisely: 

A word on no ta tion: there are no paren the ses pro vided for when these equa tions

are “com pleted” by ob jects: for in stance  will be come the in dexed func tion ,

while  be comes . But some what sim i larly to Haskell where the right-as so‐ 

cia tiv ity of type ar rows and func tion com po si tion means paren the ses can be omit‐ 

ted, they can be here too. We now have a third de fi  n i tion of an ad junc tion: in

terms of a unit η and counit ε that sat isfy these tri an gle iden ti ties.

μ ∘ ηT = 1 = μ ∘ Tη

T , η, μ)

C

M 2 → M

μ : T 2 → T T T 2

Set

Mon T : Set → Set

S S

η ηS : S → TS S

μ μS : T 2S → TS

F : C ⇆ D U

η : 1C → UF ε : FU → 1D C C D

g : FC → D φ(g) = U(g) ∘ ηC

f : C → UD φ−1(f) = εD. F(f))

C D D F(C)

g 1FC ηC = φ(1FC) C U(D) f 1UD εD = φ−1(1UD)

1FC = φ−1(ηC) = εFC ∘ F(ηC) 1UD = φ(εD) = U(εD) ∘ ηUD

Uε ∘ ηU = 1U

εF ∘ Fη = 1F 

ηU ηU(D)

Fη F(ηC)



It’s this sim pler “equa tional” de fi  n i tion of an ad junc tion which yields the monad’s

as so cia tiv ity and unit laws. We start by con sid er ing a cat e gory  and an ar bi trary

func tor  from  to , i.e. an end o func tor. We then sup pose that  is in fact the

prod uct of ad junct func tors  and  to and from an other cat e gory : .

Since  there’s a unit nat ural trans for ma tion , so in this case 

. There’s also a counit . Among this fam ily of in dexed -ar‐ 

rows, there is, cor re spond ing to the par tic u lar value of  given by , a func tion 

, or more sim ply . This par tic u lar -

arrow can be once more sent to a -arrow by func tor , yield ing over all 

. This pro vides a func tion in terms of “round trips”, 

 (that is, ). It turns out that, with a lit tle prod ding, the tri an gle

equal i ties yield ex pres sions in terms of round trips as well. Again set ting  to the

par tic u lar value  yields , or . Com pos‐ 

ing by func tor  for a given ob ject ,  yields 

, or . As so cia tiv ity re quires a lit tle more

work, but the com mu ta tive di a gram for a nat ural trans for ma tion from  to 

means that for any -arrow  be tween  and , in  we have  = .

Tak ing the par tic u lar arrow  be tween  and , set ting  to  (i.e. 

 and , and fi nally ap ply ing ... we ar rive at 

, in other words . This gives us the

monoid-like com mu ta tive di a grams for as so cia tiv ity and unit.

There’s a straight for ward re la tion ship be tween an ad junc tion and the “hid den ad‐ 

junc tion” that is a monad. Any ad junc tion  yields a monad  with 

,  un changed, and . Con versely “every monad arises from an ad‐ 

junc tion”: given any monad  on a cat e gory , there nec es sar ily ex ists a cat‐ 

e gory  such that there is an ad junc tion (  be tween  and , again with 

,  un changed, and . So the unit stays the same, and mul ti pli ca tion

is a kind of con ju gate of the counit, in fact known as a “whiskered” counit.

Since, then, a monad is ba si cally equiv a lent to an ad junc tion – which after all is

per haps the piv otal no tion of cat e gory the ory, and ap pears through out math e mat ics

– while pre sent ing a sim pler ap pear ance (one cat e gory, one func tor), we can’t be

too sur prised by its use ful ness and in creased up take in com put ing. Eu ge nio Moggi

started things off with “No tions of com pu ta tion and mon ads” in 1991, which ar‐ 

gued for a “cat e gor i cal se man tics of com pu ta tion”. Philip Wadler’s “The essence of

func tional pro gram ming”, de scrib ing the use of mon ads to “struc ture func tional pro‐ 

grams”, an nounced their in tro duc tion in Haskell the fol low ing year. There is,

though... the name. Mac Lane may not have done its adop tion within com put ing

C

T C C T

F U D T = U ∘ F

F ⊣ U η : 1C → U ∘ F

η : 1 → T ε : F ∘ U → 1D D

D F(C)

εFC : F(U(F(C))) → F(C) εFC : FUFC → FC D

C U

UεFC : UFUFC → UFC

μ : T 2 → T μ = UεF

D

FC, Uε ∘ ηU = 1U UεFC ∘ ηUFC = 1UFC μ ∘ ηT = 1T

U C εF ∘ Fη = 1F

UεFC ∘ UFηC = U1FC = 1UFC μ ∘ Tη = 1T

F ∘ U 1D

D f A B C f ∘ εA εB ∘ FUf

f = εB FUB B B FC

A = FUFC f = εFC) U

UεFC ∘ UεFUFC = UεFC ∘ UFUεFC μ ∘ μT = μ ∘ Tμ

(F , U , η, ε) (T , η, μ)

T = UF η μ = UεF

(T , η, μ) C

D F , U , η, ε) C D

T = UF η μ = UεF



any fa vors by over rul ing Gode ment’s ear lier de scrip tion as a “stan dard con struc‐ 

tion”, and Eilen berg and Moore’s use of the term “triple” (which he thought had

“achieved a max i mum of need less con fu sion”). To be sure, the in ten tion was there

right from the start: he notes that “the dis cov ery of ideas as gen eral as these is

chiefly the will ing ness to make a brash or spec u la tive ab strac tion, in this case sup‐ 

ported by the plea sure of pur loin ing words from the philoso phers: ‘Cat e gory’ from

Aris to tle and Kant, ‘Func tor’ from Car nap (Lo gis che Syn tax der Sprache), and

‘nat ural trans for ma tion’ from then cur rent in for mal par lance.” Mac Lane’s study of

the phi los o phy of math e mat ics while at Goet tin gen may have played a role, along

with the fact, in this par tic u lar case, that he had writ ten for the phi los o phy jour nal

“The Monist”. You might not think the name of a math e mat i cal con cept is of much

im por tance. But Pierre Cartier once ad mit ted that “for a long time I didn’t like

groupoids be cause they have an ugly name... ‘monoid’ isn’t much bet ter”, be fore

mus ing about “as ter oid” and “hu manoid” but thank fully not mov ing on to the term

“monad”. If a promi nent mem ber of Bour baki can be put off by a math e mat i cal

term, he can’t be the only one. Dana Scott, while de scrib ing cat e gory the ory as

“un avoid able”, also drew at ten tion to its “odd ter mi nol ogy”. Per haps be cause of

this, some pro gram ming lan guages use mon ads while heed ing the maxim “don’t

men tion the m-word”. On bal ance, though, it would seem to make more sense to

use ex ist ing terms and ex plain them clearly. Of course Mac Lane had an opin ion

about such things: best not to ex hibit “care less ness... and inat ten tion to es tab lished

ter mi nol ogy, traits which”, ahem, “we do not need to copy from the physics com‐ 

mu nity.”

*

There’s a near-con sen sus these days that the “New Math” re form ers went too far.

It’s hard to dis agree en tirely when physics teach ers were obliged to teach their own,

“prac ti cal” ver sion of math e mat ics that had sud denly been jet ti soned to make room

for ab stract al ge bra. But you might also say that the counter-re form ers threw the

baby out with the bath wa ter. Some thing doesn’t add up about the con tin ued un‐ 

will ing ness, half a cen tury on, to teach the basic con cept of a group to teenagers –

a con cept most as so ci ated with an other teenager whose life was any thing but bor‐ 

ing. For a short while they could be made aware that there might be some thing

more to math e mat ics than tri an gles and nu mer i cal recipes. And who knows, years

later they might not be par tic u larly fazed by the math e mat i cal no tion of a monad.
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