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Morse The ory stud ies the topol ogy of smooth man i folds by look ing at generic smooth

maps (Morse func tions) from smooth man i folds to the reals (or, some times, to the cir‐ 

cle), and in ves ti gat ing the crit i cal points of such maps and their in dices, in ter ac tions, the

gra di ent flow lines for the maps, etc. Cerf The ory stud ies smooth 1-pa ra me ter fam i lies

of func tions con nect ing diff er ent Morse func tions on the same smooth man i fold. Al‐ 

though there are im por tant in fi nite-di men sional ver sions of these the o ries, I will focus on

the fi nite-di men sional set ting and, es pe cially, on low di men sions like 2, 3, 4 and 5. I will

focus less on the foun da tional an a lytic tech ni cal i ties and more on the ap pli ca tions. Some

of the most im por tant re sults I want to get to are (not nec es sar ily in this order, and not

nec es sar ily in full de tail):

1. The clas si fi ca tion of sur faces.

2. The ex is tence of Hee gaard split tings of 3-man i folds.

3. Gen er a tors and re la tions for the map ping class groups of sur faces.

4. Han dle body de com po si tions for 4-man i folds and surgery di a grams for 3-man i folds.

5. The Kirby cal cu lus for 3-man i folds and 4-man i folds.

6. The iso topy ver sus pseudo-iso topy prob lem as stud ied by Cerf and Hatcher-Wag oner.

7. Un der stand ing Morse 2-func tions (generic maps to 2-man i folds).

We begin with a prob lem: Con sider the em bed ding of  in  shown at left. This is sup‐ 

posed to be ro ta tion ally sym met ric about the red -axis. Let  de‐ 

note this par tic u lar sub man i fold of  (diff eo mor phic to ). Now let

 be or thog o nal pro jec tion onto the -axis. Note that  has

two crit i cal points, in di cated, a max i mum and a min i mum. Now note

that, for any unit vec tor , we can pro ject  or thog o nally onto

the ori ented line spanned by  to get an other func tion .

Thus our orig i nal  is , and  is . (We are as sum ing

the ori gin is in the mid dle of the pic ture at left.) For an other ex am‐ 

ple,  will have six crit i cal points: two max ima, two min ima and

two sad dles, as in the fig ure below:
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Thus we have a 2-pa ra me ter fam ily of func tions , pa ra me ter ized by the 2-di men sional

pa ra me ter space . The prob lem is to some how de pict with a di a gram the be hav ior of

the crit i cal val ues of  and their in dices as  ranges over . (The index of a min i mum is

, the index of a sad dle is , the index of a max i mum is , more on in dices later.)

(Re call: for a smooth , a point  is a crit i cal point if 

does not have max i mal rank. If  is a crit i cal point, then  is a crit i cal value.

When  is 1-di men sional, not hav ing max i mal rank sim ply means being equal to 0.)

One pos si ble way to de pict this is to draw a di a gram in , where in each  you

draw the crit i cal val ues of , la belled with their in dices. Since the crit i cal val ues are usu‐ 

ally iso lated, you should have some kind of sur face in , pos si bly with some in ter‐ 

est ing sin gu lar i ties. A con ve nient pic ture for  is an open shell be tween two con cen‐ 

tric spheres (iden ti fy ing  with an open in ter val).

This pic ture drawn in  can also be thought of as the set of crit i cal val ues of the

func tion  given by .

We are just about to de fine a Morse func tion prop erly, given the above pre am ble, but

first we men tion one fa mous prob lem that was stud ied using Morse and Cerf the ory:

An iso topy be tween two maps  can be de fine as a diff eo mor phism 

 such that ,  and  is “level-

pre serv ing”, i.e.  is the iden tity on the  com po nent, or . A pseudo-

iso topy be tween  and  is a diff eo mor phism  sat is fy ing the

first two cri te ria but not nec es sar ily level-pre serv ing. Note than when glu ing man i folds to‐ 

gether along bound aries, the re sult ing man i fold is de ter mined up to diff eo mor phism by

the pseudo-iso topy class of the glu ing map (this is a good ex er cise to prove), but in other

con texts the diff er ence be tween iso topy and pseudo-iso topy is very im por tant. Cerf stud‐ 
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ied 1-pa ra me ter fam i lies of func tions con nect ing Morse func tions in order to un der stand

this prob lem, and hope fully we’ll get to that later.

Now:

Pre lim i nary de fi  n i tion: A Morse func tion is a smooth map  from an -man i fold  to a

-man i fold  such that, for every crit i cal point , there exist local co or di nates 

 about  and a co or di nate  about  with re spect to which 

. The in te ger  is called the index of .

We need to see that Morse func tions exist, that the index is in de pen dent of the co or di‐ 

nates, that there are lots of Morse func tions, that the prop erty of being Morse is sta ble

(doesn’t change under small per tur ba tions), and many other foun da tional facts. But first

some ex am ples:

When , we have min ima  with index , sad dles 

 with index  and max ima  with index .

When  we have min ima  with index  and max ima  with

index .

Note that  is not Morse, and that there is an in ter est ing per tur ba tion 

. When ,  is Morse with one min and one max, and when ,  is

Morse with no crit i cal points. We’ll dis cuss these phe nom ena more care fully soon, and

they do arise in the prob lem that we began with.

(YouTube link) 
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Ad den dum to the prob lem from last time:

In the ex er cise from last time, since the em bed ded sphere  is ro ta tion ally sym met ric

about the -axis, the crit i cal val ues of , as a func tion of , will be in vari ant under

ro ta tion of  about the -axis, and thus re ally we might as well think of the pa ra me‐ 

ter  as in , or even just in an in ter val from north pole to south pole in .

So do the prob lem as stated, but note that your an swer is ro ta tion-in vari ant. Then do it

again but this time using the sur face  at right:

Con tin u a tion of lec ture:

Last lec ture’s de fi  n i tion of a Morse func tion was called pre lim i‐ 

nary be cause it did not dis cuss bound ary be hav ior and com‐ 

pact ness. Here is the full de fi  n i tion:

De fi  n i tion: A func tion  is Morse if the fol low ing

con di tions are sat is fied:

1. For each crit i cal point  there are co or di nates around  and  with re spect to

which .

2.  is com pact.

3. 

(In class I said that ei ther  is closed and  is any thing or  is a cobor dism (see draw‐ 

ing)   from  to  and  with 

 and . The way I’ve said it

above is only slightly more gen eral, and the cobor‐ 

dism case is gen er ally the most im por tant case to

con sider.)

(To say that  is a cobor dism from  to 

means that  is com pact and . To

say that  is closed means that  is com pact with .)

Here are two im por tant re sults about Morse func tions, the proofs of which we will defer

till later in the in ter est of get ting quickly to the topo log i cal ap pli ca tions:
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The o rem: For any com pact  there ex ists a Morse func tion on . More pre cisely, for

any com pact -man i fold  and any -man i fold , and given any func tion ,

there ex ists an ex ten sion of  to a Morse func tion . (And fur ther more, Morse

func tion are generic, i.e. there are lots of them, and any given func tion can be per turbed

in an ar bi trar ily small way to be Morse, more on this later.)

Thus we have Morse func tions when we need them.

The o rem: If  is a crit i cal point of  such that the Hes sion  (the 

 ma trix of sec ond order par tial de riv a tives) is non-de gen er ate as a bi lin ear form,

then  is lo cally Morse at , i.e. there are co or di nate around  and  with re spect to

which . Fur ther more, the index  of  is pre cisely the

index of  as a bi lin ear form, the num ber of neg a tive di ag o nal en tries of  after

di ag o nal iz ing.

Thus the index of a Morse crit i cal point is in de pen dent of the co or di nate sys tem.

Topol ogy from Morse func tions

Our first ex am ple of re cov er ing topo log i cal in for ma tion from a Morse func tion is the case

of a Morse func tion with no crit i cal points.

The o rem: If  is a cobor dism from  to  with a Morse func tion , if 

has no crit i cal points then  is diff eo mor phic to .

Proof: We will con struct a vec tor field  on  such that  (which is the same

thing as say ing that , where I’m using  for the ex te r ial diff er en tial and 

for the de riv a tive). Using this we will flow for ward along  from  to con struct the dif‐ 

feo mor phism. 

To get  we need a Rie mann ian met ric (there are other more di rect ways using a par ti‐ 

tion of unity to di rectly patch to gether such ’s on co or di nate charts, but using a Rie‐ 

mann ian met ric has some ad van tages and is at the very least an im por tant idea). A Rie‐ 

mann ian met ric  on  is a choice of an inner prod uct  on  for each , vary ing
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smoothly in . (Vary ing smoothly in  just means that, when  is writ ten as an  ma‐ 

trix in local co or di nates, the en tries of the ma trix are all smooth func tions of .) Next

time we will use a par ti tion of unity to show that Rie mann ian met rics exist and then

show how to use such a met ric to get .

p p g n × n

p

V
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Fur ther ad den dum to home work prob lem: As a warmup, do

the fol low ing one-lower-di men sional ver sion: Let  be the em‐ 

bed ding of  in  shown at right and now, for each ,

de fine the anal o gous . Then draw a graph in 

of the crit i cal val ues and their in dices as a func tion of . Now

the in dices will only be  and . The crit i cal events to note are

births and deaths of pairs of crit i cal points and cross ings of

crit i cal val ues (one crit i cal value ris ing above or below an other

one).

Now con tin u ing our proof: We need a Rie mann ian met ric on , so here is the quick

proof that Rie mann ian met rics exist.  Cover  with co or di nate charts  with a cor re‐ 

spond ing par ti tion of unity . In each co or di nate chart choose the stan dard Eu clid ean

inner prod uct . Then let . This works be cause con vex com bi na tions of pos i‐ 

tive defi  nite sym met ric ma tri ces are pos i tive defi  nite sym met ric ma tri ces.

Now note that a met ric , at each point , is a non-de gen er ate bi lin ear form 

 and can thus equiv a lently be thought of as an iso mor phism 

. Then using this iso mor pism, we con struct a vec tor field  by 

. Be cause  has no crit i cal points,  is nowhere . This is the gra di ent vec‐ 

tor field for  with re spect to the met ric , de noted . As a basic ex er cise you should

ver ify that, when  is the stan dard inner prod uct on  and , then  is the

usual gra di ent .

Now be cause  is never ,  is never , so we can let ,

so that . This is the vec tor field we wanted. Now we con struct a diff eo mor‐ 

phism  by mak ing  equal to the point  you get to by start ing at 

 and flow ing for ward along  for time . The fact that  means that 

, and from this and the ex is tence and unique ness of so lu tions to or di nary diff er en‐ 

tial equa tions shows that  is a diff eo mor phism. 

So now what if there are crit i cal points?

Sup pose that  is a cobor dism from  to  with a Morse func tion   with

one sin gle crit i cal point  of index , as in the pic ture at right. We will again use a

gra di ent vec tor field  to un der stand the topol ogy of  in terms of the topol ogy

of  but now, be cause , we can not rescale   to get a vec tor field  with 

 on all of . So in stead we will di vide  into four parts, on three of which we
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will rescale . But be fore

we do this we need to con‐ 

struct our met ric  a lit tle

more care fully: We want

there to be a co or di nate

chart  around  with re‐ 

spect to which  is the

stan dard Eu clid ean inner

prod uct and  is the stan dard Morse local model , so that . This is

pos si ble be cause we can start with a stan dard Morse chart around  as one of the charts

in our par ti tion of unity con struc tion and then arrange that, in a ball neigh bor hood

around , one of the ’s is iden ti cally  and all the oth ers are .

So now, as sum ing that ,  and  are stan dard in‐ 

side a neigh bor hood  of , we draw a pic ture of 

 with the level sets of  and the flow lines of  to

the right. We choose an  so that 

and  in ter sect  as shown. Then our

four pieces of , which we will study more care‐ 

fully next time, are:

1. , which is diff eo mor phic to 

 using flow along 

.

2. , which is diff eo mor phic to  using back ward flow

along .

3. The in ter sec tion of  with the clo sure of the union of all flow

lines for  which start in some tubu lar neigh bor hood of  in 

. This is the “mys tery piece” that we will un der stand bet ter soon.

4. The rest of , which is a prod uct that we will also dis cuss next

time.

(YouTube link)
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Ex er cise: Let us say that a Rie mann ian met ric  is adapted to a Morse func tion  if, for

each crit i cal point  of , there exist co or di nates around  with re spect to which 

 and  is the stan dard inner prod uct. Show that the space of met rics adapted

to a fixed Morse func tion is con nected. I.e. if  and  are adapted to  then they are

con nected by a smooth fam ily , adapted to  for each . It might be help ful to show

that any two co or di nate charts near , with the same ori en ta tion, for which  is stan dard

can be con nected by a smooth path of such co or di nate charts. (Thanks to Bruce Bartlett

and Eric Burgess for point ing out the im por tance of the ori en ta tion here, since  is

dis con nected.) It is also help ful to show that the space of inner prod ucts on  is con‐ 

nected.

Now back to the main thread: We are think ing about the sit u a tion where  is a

cobor dism from  to 

with a Morse func tion 

 with a sin gle

crit i cal point  of index ,

and we want to un der stand

what this says about the

topol ogy of . Refer again

to the fig ure at right.

Where we are going is: we want to de scribe  as built as a prod uct on  at the bot‐ 

tom, with some kind of “han dle” at tached going over the crit i cal point , fol lowed by an‐ 

other prod uct on  at the top.

For our first ap proach to mak ing this pre cise, we break  into four pieces: 

,  (both of which are

prod ucts) and two pieces mak ing up 

. The small 

is cho sen so that there is a co or di nate

chart  around  mak ing  stan dard,

with co or di nates , such that

the closed ball  is con tained in

. Then, for some , we can take

our co or di nate chart  to be the open

ball , and  and  look like

the fig ure at right. Note that 

 is a sphere . Pick some small  so that the 
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-neigh bor hood  of this  in  is con tained in , and then let 

 be the clo sure of the union of the flow lines for  which pass through this 

, in ter sected with . This is the re gion shaded in blue. We

want to think of  as a cobor dism from  to , where the 

 is , which is a -neigh bor hood of 

 in . In the pre ced ing fig ure of the whole

cobor dism , the re gion  is also out lined in blue.

See ing  as a cobor dism be tween man i folds with bound ary means en larg ing the de fi  n i tion

of a cobor dism to in clude man i folds with bound ary and cor ners, with the cor ners sep a rat‐ 

ing “ver ti cal” bound ary (which is a prod uct) and “hor i zon tal” bound ary (the top and the

bot tom). If we allow this, and the de fi  n i tions are nat ural, then the com ple ment of  

 is also a cobor dism, but this time a prod uct. Thus we can char ac‐ 

ter ize  as fol lows:  is built from  by first con struct ing a prod uct  (we re‐ 

place  with  for sim plic ity). Then we at tach  to  via an em bed‐ 

ding of  into . At this point we do not have a smooth man i fold but

we make it smooth by also at tach ing a prod uct cobor dism to the com ple ment of this em‐ 

bed ding, and glu ing the sides of the prod uct cobor dism to the sides of . Fi nally we com‐ 

plete with an other prod uct cobor dism , but since this doesn’t “do any thing” we

can just ig nore that step.

Next time I hope to say this a lit tle more care fully, so I’ll leave out the rest of my waffl e

from this lec ture and clar ify in my next post. Here’s the video (thanks to Eddie Beck):

(YouTube link)
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I be la bored some sub tleties about han dles last time and will con tinue to do so a lit tle bit

more here. The up shot of the story should be that, when  is an -di men sional cobor‐ 

dism from  to  with a Morse func tion  with a sin gle crit i cal point of

index , then  is diff eo mor phic to  with an -di men sional -han dle at tached

to . Here are 3 diff er ent ap proaches to defin ing a han dle and what it means to

at tach a han dle, and hence mak ing sense of the pre ced ing sen tence:

1. The most stan dard thing is to say that an -di men sional -han dle is 

. This is glued to the top  of a cobor dism  via an em bed‐ 

ding . The bound ary of  is di vided into two parts: the at tach‐ 

ing re gion  and the free re gion 

. Note first that  is not a smooth man i fold, but a man i‐ 

fold with cor ners, and that, after at tach ing such a han dle, we get a man i fold with

cor ners, which need to be smoothed. All this is il lus trated in the fig ure below. There

are sub tleties one could dis cuss about what it means pre cisely to smooth cor ners and

about the fact that any rea son able way of smooth ing the cor ners pro duces the same

smooth man i fold. Some of these de tails are dealt with in Kosin ski, Diff er en tial Man i‐ 

folds.

2. The sec ond ap proach is the ap proach dis cussed first in the pre ced ing lec ture, in

which the han dle is it self a cobor dism, but a cobor dism with cor ners be tween man i‐ 

folds with bound ary. More pre cisely,  is a sub set of  de fined as fol lows: Let

. Let . Then

let  be the clo sure of the in ter sec tion of  with the union of all flow lines

for  start ing on . Note that  and that  is a cobor dism

from  to . Fur ther more,  has

“prod uct sides” , the part of  con sist ing of flow lines

start ing at . In this case, what it means to at tach  is to choose an
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em bed ding , glue  using this at tach ing map, and then at tach a

prod uct , glue ing the sides of this prod uct to the sides of 

, re sult ing in a smooth man i fold. This is il lus trated below.

3. The third ap proach is to de scribe the han dle as some thing that im me di ately pro‐ 

duces a smooth man i fold after being at tached; in this case it should have “flanges”

in stead of cor ners. Mil nor, in his Morse The ory, does this by com par ing the Morse

func tion  and a small per tur ba tion of  sup ported in a neigh bor hood of the crit i cal

point. Here is an other way:  is a sub set of  de scribed as fol lows: Let 

 and  be as in the pre ced ing con struc tion. Now let 

be the time it takes to flow from a point on  to . Thus 

along . Choose a bump func tion 

and con sider the func tion . Then let  be the clo‐ 

sure of the union of flow lines for  start ing at  and flow ing for ward for time 

. This is il lus trated below and, once again, is at tached via an em bed ding of 

. The re sult ing man i fold is im me di ately smooth and the new bound ary is

ob tained from the old bound ary by “re plac ing” the image of the em bed ding of 

 with the other part of the bound ary of , which is diff eo mor phic to 

.

Hence forth we will use the sim plest  model, but I wanted to dis cuss these sub‐ 

tleties be cause, in some con texts, in can be come im por tant. For ex am ple, if one wants to

build man i folds with cer tain ad di tional struc tures (sym plec tic or met ric struc tures, for ex‐ 

ϕ : Sk−1 × Bk ↪ M H

[0, 1] × (M ∖ ϕ(Sk−1 × Bk))

H

f f

Hn
k R

n

f : R
n → R ∂−H τ : ∂−H → (0, ∞]

∂−H ⊂ f−1(−1) f−1(1) τ = ∞

Sk−1 × {0} ⊂ Sk−1 × Bn−k = ∂−H μ : Bn−k → [0, 1]

μτ : Sk−1 × Bn−k = ∂−H → (0, ∞] H

∇f ∂−H

μτ

Sk−1 × Bn−k

Sk−1 × Bn−k H

Bk × Sn−k−1
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am ple), one would like to be very care ful about ex tend ing such struc tures across han dles,

and then one may need to be quite care ful with the rounded cor ners.

In the rest of the lec ture I went through ex am ples of han dles in di men sions one and two,

and dis cussed the cases  and . I’ll save that writeup for the next blog post.

Here is the video:

(YouTube link) 

k = 0 k = n

https://youtube.com/watch?v=zaeSiopUWFg
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Here we focus on ex am ples of han dles. Re call that an -di men sional -han dle is 

 with  di vided into two re gions, the at tach ing re gion 

and the free re gion , and a han dle is at tached to a pre-ex ist ing cobor dism 

from  to  via an em bed ding of the at tach ing re gion into , pro duc ing a new

cobor d sim  from  to , con tain ing . Note that we have not yet dis cussed care‐ 

fully how  is ob tained from , but when we do dis cuss this, the gen eral method will

be known as surgery.

First we note that all of this even makes sense when  or , with the con ven tion

that  is a point and . For ex‐ 

am ple,  is built with a -han dle 

, at tached along an em bed ding

of , i.e. not at tached to any thing, fol‐ 

low ing by a -han dle  at tached

along an em bed ding of , as in

the fig ure to the right. This pic ture ob‐ 

vi ously gen er al izes to  built with a -han dles and a -han dle.

Our main re sults thus far con cern Morse func tions with zero or one crit i cal points, but

these im me di ately imply the fol low ing gen eral re sult:

Corol lary: Every cobor dism de com poses into a se quence of prod ucts and han dles. In par‐ 

tic u lar, every closed -man i fold can be built start ing with a -han dle, then at tach ing

some num ber of other han dles of index , and then cap ping off with a -han dle.

(In fact we can al ways arrange that, if the man i fold is con nected, we only need one -

han dle and one -han dle, but this fact is not en tirely triv ial and we will try to prove it

care fully later.)

So here is a se quence of ex am ples:

Di men sion :  again, but with more han dles; no tice the diff er ent pos si ble ways you

might can cel pairs of - and -han dles:

n k

H = Hn
k = Bk × Bn−k ∂H Sk−1 × Bn−k

Bk × Sn−k−1 X

M0 M1 M0

X ′ M0 M ′
1 X

M ′
1 M1

k = 0 k = n

B0 S−1 = ∅

S1 0

B0 × B1

∅

1 B1 × B0

S0 × B0

Sn 0 n

n 0

0 ≤ k ≤ n n

0

n

1 S1

0 1



Di men sion : Here is a stan dard pic ture of a torus de com posed into a -han dle, two -

han dles and  a -han dle, with prod ucts in be tween. In terms of this de com po si tion into

el e men tary cobor disms, the sec ond -han dle is at tached to the top of the prod uct above

the first -han dle. How ever, we can let the at tach ing map for the sec ond -han dle flow

down along the gra di ent vec tor field through the prod uct and past the first -han dle (as

long as we are not un lucky and don’t get sucked into the first -han dle’s crit i cal point -

this is again an issue to be dis cussed more care fully soon), and then see both -han dle

at tached si mul ta ne ously to the bound ary of the -han dle.

Di men sion : Now it gets in ter est ing. First, we must aban don hope of em bed ding the -

man i fold in  and see ing the Morse func tion as the height func tion. So in stead we will

just draw some han dle de com po si tions and, per haps, some level sets of the Morse func‐ 

tions. First re call the three kinds of han dles in di men sion :

We can put these to gether as fol lows, for a sim ple ex am ple:

2 0 1

2

1

1 1

1

1

1

0

3 3

R
3

3



Note that, after at tach ing the -han dle, we have a ball again, so we might as well not

have at tached the - and the -han dle at all. I.e. these two han dles can be can celled in a

way that will be made pre cise in due time. (This is the con vert ible roof, see end of Lec‐ 

ture 5 video for the hand ges tures,) This pic ture is hard to look at so we can flat ten it

and draw only the im ages of the at tach ing maps in the bound ary of the -han dle (iden ti‐ 

fy ing  with ) as fol lows:

Note that we could have many -han dles, so some la belling of the feet is ap pro pri ate, and

note that we only need to draw the core of the at tach ing map of each -han dle (the

image of ) to spec ify the iso topy class of the at tach ing map. In fact,

the same could be said for -han dles (as sum ing every thing is ori ented) but it is vi su ally

con ve nient to draw the whole disk. So here is an other ex am ple:

So this has three -han dles, la belled ,  and , and three -han dles, la belled ,  and ,

and, of course, a -han dle that is the “back ground” to this pic ture and a -han dle that

2

1 2

0

S2
R

2 ∪ ∞

1

2

S1 × {0} ⊂ S1 × B1

1

1 A B C 2 a b c

0 3



caps every thing off. First, to see that you can cap it off with a -han dle you need to ver‐ 

ify that the bound ary is .

Ex er cise: show that this man i fold is .

I’ll end here, al though in the lec ture I then dis cussed Hee gaard split tings. I’ll write that

up next time. Here’s the video:

(YouTube link) 

3

S2

S1 × S2

https://youtube.com/watch?v=ghm9PvfPLuE
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Ex er cise: Let  be a torus with two bound ary com po nents em bed‐ 

ded in  as in the top pic ture at right, and let  be pro‐ 

jec tion onto the ver ti cal di rec tion, a Morse func tion with two crit i cal

points of index  and with  being a level set. Iden tify  with the

square-with-op po site-sides glued minus 2 disks shown below the em‐ 

bed ded pic ture, so that the in di cated curves ,  and  match up. On

the square pic ture, we have an au to mor phism  ob tained by

ro tat ing the square . Let  and let . Find a generic

ho mo topy  from  to , con stant on  and . Generic

means that  is Morse for all but fi nitely many times , and when

not Morse, we have a sim ple birth or death of a pair of can celling

crit i cal points of suc ces sive index. Also, if you don’t con sider dis tinct

crit i cal points with the same crit i cal value as being Morse, then you should also allow fi‐ 

nitely many times when two crit i cal points cross. Draw the Cerf graphic for this ho mo‐ 

topy, i.e. the graph in  of the crit i cal val ues with their in dices for all .

Hee gaard split tings and Hee gaard di a grams: We need three facts here that will be

proved later:

1. For any closed con nected -man i fold  there is a Morse func tion on  with ex actly

one index  crit i cal point (min i mum) and one index  crit i cal point (max i mum).

2. Given any Morse func tion , there is a ho mo topy of maps , with 

, and  Morse for all , such that the crit i cal val ues of  are or dered by index.

In other words, if the in dices of crit i cal point  and  are  and , resp., and if ,

then . (Note that there if  does not sat isfy this prop erty then there will

nec es sar ily be times  where  has two crit i cal points with the same crit i cal value,

and these times should be iso lated. We call these times “crit i cal value cross ing

times”.)

3. Given a Morse func tion  with crit i cal val ues or dered by index, a generic

choice of an adapted met ric al lows us to as sume that all the -han dles are at tached

si mul ta ne ously to the bound ary of the union of the han dles of index . In other

words, if  and  are crit i cal points of index  with  and no crit i cal val ues

in , we can use the gra di ent flow to com pare the free re gion of the

bound ary of the han dle for  and the at tach ing re gion of the bound ary of the han dle

for  in side an in ter me di ate level set  for . When the met ric is

cho sen gener i cally these will be dis joint, and thus we can flow from the at tach ing re‐ 

Σ
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gion of the han dle for  down along the gra di ent field past the han dle for  and see

them as both at tached to a level set below .

(As a con se quence of these re sults, one some times works with self-in dex ing Morse func‐

tions, func tions with the prop erty that, for a crit i cal point , the index of  equals .

Note that these are not quite generic be cause dis tinct crit i cal points do not have dis tinct

crit i cal val ues, so some might con sider these not to be Morse func tions, but that might

be being too nit picky. I will not use that ter mi nol ogy much, but you see it a lot in -

man i fold topol ogy.)

Now con sider a closed con nected ori ented -man i fold  with a Morse func tion 

 and cor re spond ing han dle de com po si tion as in 3 above. Let  be a reg u lar

value be tween the index  and index  crit i cal val ues, and let , 

 and . Then  is the re sult of at tach ing some num ber  of -

han dles to a ball ( -han dle) and  is a genus  sur face. On , con sider the Morse

func tion ; the index  crit i cal points of  be come index  cri it i cal points for  and

thus  is the re sult of at tach ing  -han dles to a ball and  is a genus  sur face. 

There fore , so  has the same num ber of index  and  crit i cal points, and both 

and  are diff eo mor phic to the stan dard genus  han dle body (the solid ob ject in 

bounded by the stan dard em bed ding of a genus  sur face in ). This de com po si tion of 

 into two solid han dle bod ies is called a Hee gaard split ting of .

Think ing now of con struc tions of man i folds, rather than de com po si tions of man i folds, we

get the re lated no tion of a Hee gaard di a gram. In the above fig ure, not ing that  is dif‐ 

feo mor phic to the stan dard genus  sur face , we can now in stead con sider the Morse

func tions  on  and  on , in which case we see both  and  as built by at tach ing 

 -han dles and a -han dle to . In other words,  is built (or, rather, a -man i fold dif‐ 

feo mor phic to  is built) by start ing with  and at tach ing  -han dles and a -

han dle to  (pro duc ing ) and then turn ing things up side down and at tach ing 

more -han dles and a -han dle to  (pro duc ing ). This con struc tion is com pletely

de ter mined by the  at tach ing cir cles (sim ple closed curves), often la belled  for

 and  for . The  curves must be mu tu ally dis joint and their com ple ment in 

 must be a -punc tured sphere; ditto for the  curves. Any such col lec tion of sim ple
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closed curves in  de ter mines a closed -man i fold; this is a Hee gaard di a gram. The ex‐ 

am ple below is , again:

This is the data that is used to com pute the fa mous Hee gaard-Floer in vari ants of -man i‐ 

folds, but that story is be yond the scope of this course.

Surgery: The com ment above that, in a Hee gaard di a gram, the com ple ment of the 

curves (resp.  curves) should be a -punc tured sphere mer its fur ther dis cus sion. This is

a con di tion that guar an tees that, after at tach ing the -han dles along these curves, the

new bound ary is  and so we can cap off with a -han dle. Surgery is the process by

which the bound ary of a man i fold changes when one at taches a han dle along that bound‐ 

ary. If  is a cobor dism from  to  and we at tach an -di men sional -han dle along

an em bed ding , we get a new cobor dism from  to , and  is

diff eo mor phic to , be cause we “cover up” the image

of the at tach ing re gion of the han dle and “ex pose” the free re gion of the han dle. The free

re gion  is glued via . This is -di men sional 

-surgery.

In the Hee gaard di a gram case, we have  and , so that we are doing -di men‐ 

sional -surgery by re mov ing a  and re plac ing with . In other words, we

cut open  along the at tach ing curve, leav ing two new bound ary com po nents, and then

we cap off each com po nent with a disk.

We just touched on -man i folds in this lec ture, but in the notes I’ll start that in the next

post. Here’s the video (thanks Eddie)

(YouTube link)
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(At the be gin ning of class, Eric Burgess pre sented a so lu tion to the prob lem of see ing the

-pa ra me ter fam ily of Morse func tions as so ci ated to pro ject ing a par tic u lar em bed ding of 

 to var i ous di rec tions, see the video at the end of this post.)

-man i folds: Now we ex tend the ideas from di men sion  to di men sion  to do our best

to draw pic tures of -man i folds built from han dles. We start with a sin gle -han dle. It’s

bound ary is , which we draw as , the am bi ent space in which the rest of

the draw ing will hap pen. This is just the back ground of our draw ing - i.e. we don’t re ally

“draw” any thing, we just imply it. We will as sume no han dles ex cept the final -han dle

will have at tach ing maps which hit .

A -di men sional -han dle is  at tached along , a pair

of balls. We draw these balls as small balls in , with dot ted lines

con nect ing the “feet” of each -han dle so we know which ball goes

with which ball. Thus the il lus tra tion at right sim ply de scribes a -

han dle with two -han dles at tached. Note that the new bound ary,

after at tach ing these -han dles, is not  be cause the in te rior of each

ball is no longer in the bound ary of the -man i fold, and each  has been re placed

with . We should vi su al ize each pair of balls as in di cat ing “worm-holes” al low ing

us to tun nel from one re gion of space to an other along an in ter val’s worth of ’s. In par‐ 

tic u lar, this new bound ary here is ex actly the con nected sum of two copies of .

Thus we could not at tach a -han dle at this point.

A -di men sional -han dle is  at tached along

, i.e. a solid torus. They can go over -han‐ 

dles or not, as show in the di a gram at right, in volv‐ 

ing two -han dles and two -han dles, one of which

goes over one -han dle once and one of which does

not go over any -han dles. Un for tu nately just

draw ing the im ages of the at tach ing maps now no longer de ter mines the at tach ing maps

up to iso topy. To un der stand this bet ter we now con sider fram ings.

Fram ings: Con sider an em bed ding . Under what con di tions does this ex‐ 

tend to an em bed ding ? An ob vi ous nec es sary con di tion is that the

image  of the em bed ding  should have a triv ial nor mal bun dle, and this is a suffi  cient

con di tion by the tubu lar neigh bor hood the o rem. When  we al ways have triv i al ity.

When  we may not have triv i al ity if  is nonori entable (e.g. the core of a Mo‐ 

bius band). But if  is ori entable then ’s al ways have triv ial nor mal bun dles. Thing get
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more in ter est ing when  and , but we will stay away from such high di‐ 

men sions for now.

Now, as sum ing  has triv ial nor mal bun dle , there may be more than one triv i al iza tion

of  (iso mor phism ). The stan dard proof of the tubu lar neigh bor hood the o‐ 

rem ex tends to show that iso topy classes of triv i al iza tions of  are in one-to-one cor re‐ 

spon dence with iso topy classes of ex ten sions  of . A fram ing of  is pre cisely an iso‐ 

topy class of triv i al iza tions of the nor mal bun dle . We will dis cuss fram ings in full gen er‐ 

al ity next time, but for now, con sider two cases:

First,  and . So  is a pair of points in a -man i fold. We claim that,

up to iso topy, there are ex actly four fram ings of . These are il lus trated below:

Next we show how each of these fram ings spec i fies a han dle at tach ment:

Note that the two on the left are diff eo mor phic, and the two on the right are diff eo mor‐ 

phic, and the dis tinc tion is ori entabil ity. This ex am ple gen er al izes to higher di men sional -

han dles, with the up shot being that, if we agree that we are only work ing with ori entable

man i folds, we do not need to spec ify the fram ing of the at tach ing map of a -han dle and

need sim ply draw the im ages the at tach ing maps (pairs of balls). Note that we could

draw points rather than balls but that the use of balls al lows us to dis tin guish diff er ent

curves going over a sin gle -han dle more eas ily than points would.

Next, con sider  and . Now we are fram ing a sim ple closed curve in a

sur face, and a mo ment’s thought shows that there are only two fram ings, but that han dle

at tach ment with ei ther fram ing pro duces diff eo mor phic man i folds. In fact, this phe nom e‐ 
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non where two dis tinct fram ings pro duce the same man i fold will per sist in all di men sions,

so we should im me di ately mod out by it. We leave this de tail for the reader to sort out.

Fi nally for this post, con sider  and . Now we are

fram ing a knot  in a -man i fold . A fram ing is a pair of lin early

in de pen dent nor mal vec tors to  at each point along  (vary ing

smoothly along  of course). To mod out by the issue men tioned in

the pre ced ing para graph, we will as sume that  is ori ented,    is

ori ented, and that the tan gent to  fol lowed by the two nor mal vec‐ 

tors is an ori ented basis, so that, up to iso topy, we do not need to

spec ify the sec ond nor mal vec tor. Thus the fram ing is just given by a sin gle nowhere zero

vec tor field along , nor mal to . After iden ti fy ing  with a tubu lar neigh bor hood of ,

this can be seen as a par al lel copy of  on the bound ary of a tubu lar neigh bor hood, as

shown at right.

In tu itively, this is char ac ter ized up to iso topy by the num ber of times

it twists around . I.e. some how fram ings of  can be iden ti fied

with . The prob lem is that, in gen eral, there is no pre ferred -fram‐ 

ing. The best we can say in gen eral is that the set of fram ings of 

is a -tor sor, or an affine space for ; it looks like  but we don’t

know where  is. Equiv a lently, given any fram ing, we can add or sub‐ 

tract  to it in a con sis tent way to pro duce a new fram ing. We use

the right-hand rule for the sign con ven tion; an ex am ple of adding  to the pre vi ous

draw ing is shown at right.

An other use ful way to draw a framed knot is to adopt the con ven tion that we al ways use

the black board fram ing, the fram ing where the pushoff is in the plane of the sur face on

which the sur face is drawn. Here are some ex am ples; note that, to acheive extra twists

we in tro duce small kinks in :

Here’s the video:

(YouTube link) 
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Let’s dis cuss fram ings more care fully: A fram ing of an em bed ded -sphere  in a 

-man i fold  is an iso topy class of triv i al iza tions of the nor mal bun dle 

. (So  needs a triv ial nor mal bun dle to begin with.) The diff er ence be‐ 

tween two triv i al iza tions is a map , but since we only care about triv i al iza‐ 

tions up to iso topy, we only care about this map up to ho mo topy, so the diff er ence be‐ 

tween two fram ings is an el e ment of . (Here we use that  de for‐ 

ma tion re tracts onto . Also, if , we re ally mean  and 

.)

Thus the diff er ence two fram ings of a knot in a -man i fold lies in . This ex‐ 

plains the com ment last time that the set of fram ings is a -tor sor. This is worth com‐ 

par ing to the case of -knots (em bed ded ’s) in a -man i fold, in which case we have 

, so there are two diff er ent ways to at tach a -han dle to a -man i fold

along a fixed em bed ding of  in the -man i fold bound ary.

Now there is a spe cial case when the set of fram ings of a knot  can be canon i‐ 

cally in den ti fied with , when . (In par tic u lar, when  this

holds.) In this case  for some ori ented, com pact sur face , and we use this

Seifert sur face  to de fine a pre ferred -fram ing. (Note that al ge braic topol ogy just tells

us that  is the bound ary of a sin gu lar -chain, but not that the -chain can be re al ized

by a smooth sur face. Seifert gave an ex plicit al go rithm for con struct ing such a sur face

from a knot di a gram when , but there is also a gen eral smooth topol ogy ar gu‐ 

ment using a map from  to  and pulling back a reg u lar value.) We ar bi trar ily

ori ent  and then ori ent  so that the bound ary ori en ta tion agrees with the given ori en‐ 

ta tion on . Then a fram ing of  gives a par al lel push-off  of , with ori en ta tion

com ing from . Make  trans verse to  and count in ter sec tions with sign (  means 

goes from the neg a tive side of  to the pos i tive side and  means the op po site). This as‐ 

so ci ates an in te ger to the fram ing; this in te ger is oth er wise known as the link ing num ber 

. (See Rolf sen, Knots and Links, for a beau ti ful dis cus sion of ten diff er ent de fi  n i‐ 

tions of link ing num ber.) Here are some pic tures to il lus trate this:
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3 π1(SO(2)) = Z

Z

1 S1 4
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S1 4
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Z [K] = 0 ∈ H1(M; Z) M = S3
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Σ 0

K 2 2

M = S3

M ∖ K S1

K Σ

K K K ′ K

K K ′ Σ + K ′

Σ −
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OK, now back to build ing -man i folds. We know

how to draw pic tures of a -han dle with some -

han dles, and now we can add the -han dles by

draw ing framed knots, some of which may go over

the -han dles. To the right is a par tic u larly nice ex‐ 

am ple, called the Mazur man i fold, in volv ing one -han dle, one -han dle and one -han‐ 

dle. It is con tractible, roughly be cause the at tach ing cir cle for the -han dle has a clasp

which, if un done, could slide off the -han dle leav ing the -han dle only going once over

the -han dle, and thus can celling the -han dle (c.f. con vert ible roof). But it is not diff eo‐ 

mor phic to , and it’s bound ary is a -man i fold with the same ho mol ogy as  (a ho‐ 

mol ogy sphere) but non triv ial . In par tic u lar, we can not com plete this -man i fold to a

closed -man i fold by at tach ing a -han dle; to do so we would need the bound ary to be 

. Thus we see that we need to think more care fully about surgery on -man i folds in

order to un der stand the bound aries of -di men sional han dle bod ies and know whether we

can cap them off to make closed -man i folds.

So what is surgery along a knot in a -man i fold? If a  and we at tach a -han‐ 

dle along  to pro duce a new -man i fold  with , then  can

be de scribed pre cisely as:

Here the glu ing map is la belled , by which I mean . How do we see this pic to ri‐ 

ally? Let  and let , a knot and a tubu lar neigh bor hood in 

. Let , the merid ian curve, and let , the lon gi tude curve.

(Here  is just some ar bi trary point in .) The merid ian  is char ac ter ized up to iso topy

by being ho mo log i cally non triv ial in  but bound ing a disk in . On the other hand the

lon gi tude  de pends on the fram ing of , and is in fact ex actly the par al lel push-off we

have been dis cussing above. (  is par tially char ac ter ized by in ter sect ing  once, but

that’s not enough.) Then  can be de scribed as the re sult of re mov ing  from  and

glue ing back in a solid torus so that, after glu ing it back in,  now bounds a disk (the 

in ) while  does not. This is il lus trated below:
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Basic ex am ples (ex er cises)

1. -framed surgery on the un knot in  gives . Thus if we build a -man i fold

with a -han dle and a -han dle at tached along the -framed un knot, we can not cap

it off to a closed -man i fold by just at tach ing a -han dle.

2. -framed surgery on the un knot gives . Thus we can build a closed -man i fold

with one -, one - and one -han dle, with the -han dle at tached along the -

framed un knot. In fact these -man i folds are  (for  fram ing) and  (for 

fram ing).

I ended with an at tempt to de scribe ’s in side  and  with self-in ter sec tion ,

but that’s best left for the blog until the next post.

Here’s the movie:

(YouTube link)
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2̄ −1

S2
CP

2
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2̄ ±1

https://youtube.com/watch?v=f-B-JhIP32I
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Re gard ing the han dle de com po si tions given last lec ture

for  and , we ob serve that at tach ing a -han dle

to a -han dle with fram ing  to an un knot im me di ately

yields an em bed ded sphere with self-in ter sec tion . We

see this, and a more gen eral ver sion, as fol lows (and il lus‐ 

trated at right in the half-di men sional ver sion):  If we at‐ 

tach a -han dle  to a -man i fold  along a null-

ho mol o gous knot  with fram ing , and 

for some sur face , then the in te rior of  can be

pushed in to the in te rior of  so as to meet  trans‐ 

versely along . Then glu ing the core  of the

han dle to  we get a   smooth closed sur face ,

where  is the re sult of at tach ing the han dle to .

The self-in ter sec tion of a sur face in a -man i fold is the

in ter sec tion of the sur face with a nearby par al lel copy of

it self, counted with signs. We can push  off it self in 

with out self-in ter sec tions, and we can push  off it self in  with out self-in‐ 

ter sec tions, each re strict ing to a par al lel push-off of  in . The diff er ence be tween

these push-offs (lit er ally their in ter sec tion num ber in the bound ary of a tubu lar neigh bor‐ 

hood of ) is ex actly the fram ing  of  (yes, the signs do work out right). Thus the

self-in ter sec tion of , de noted , is ex actly equal to . In the case of an un knot, 

is a disk, so  is a sphere.

Sim i larly, if one at taches two -han dles along null ho mol o gous knots, each one pro duces a

closed sur face, and the in ter sec tion num ber be tween the two sur faces is the link ing num‐ 

ber be tween the knots.

As cend ing and De scend ing man i folds: We have been draw ing han dle di a grams as if all

the han dles were at tached “at once”, i.e. as if the cor re spond ing crit i cal points had the

same value. But cer tainly in some in stances this can not be done; as in our ex am ples

where -han dles run over -han dles. To un der stand bet ter when we can or can not do this,

we need to see larger han dles than we have seen so far. In our ar gu ment that a Morse

func tion on a man i fold gives a de com po si tion of the man i fold into han dles, each han dle is

con tained in a small neigh bor hood of the crit i cal point, and “most” of the man i fold is

made up of prod ucts.
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In stead, con sider a gra di ent-like vec tor field  for a Morse func tion  and a crit i cal point 

. Then the as cend ing man i fold for , , is the union

of  and all flow lines whose back ward-time limit is ,

while the de scend ing man i fold for , , is the union

of  and all flow lines whose for ward-time limit is . In

local co or di nates near  in which 

,  is the -

space and  is the -space. Near every other

point in  (resp. ), for ward (resp. back ward) flow

along  for some time gives a local diff eo mor phism into such a local co or di nate chart

around , and hence we see that  is a smooth -di men sional sub man i fold and  is a

smooth -di men sional sub man i fold. They in ter sect trans versely at . If  is closed,

so that there is no bound ary to run into, they are diff eo mor phic to  and .

Now con sider a cobor dism  from  to  with

Morse  and crit i cal points ,

and sup pose that all the as cend ing and de scend ing

man i folds of dis tinct crit i cal val ues are dis joint.

(De scend ing man i folds are al ways dis jo ing, and

like wise as cend ing man i folds are al ways dis joint,

but a point can be on the as cend ing man i fold of

one crit i cal point and the de scend ing man i fold of

an other.) In this case, the at tach ing maps for the

han dles cor re spond ing to the crit i cal points all flow

all the way down to , and so we can see  as built from  with all the han‐ 

dles at tached si mul ta ne ously to . In fact, the han dle  cor re spond ing to

crit i cal point  is pre cisely a small neigh bor hood of , with  being the core 

 and  being the co-core .

In the next post we will in ves ti gate cir cum stances under which we can arrange for this

dis joint ness to occur.

(YouTube link)
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Con sider two crit i cal points  of a Morse func tion  on , of in dices  and , re‐ 

spec tively, with  and no crit i cal val ues in be tween. We want to in ves ti gate

con di tions under which we can as sume that their as cend ing and de scend ing man i folds, 

and , can be as sumed to be dis joint. Of course,  and  are not de fined until we

choose a met ric  or, at least, a gra di ent-like vec tor field .

Note first that, in be tween  and , every thing is a prod uct and is de ter‐ 

mined by be hav ior in  for some reg u lar . Thus we look at 

 and , all in side the -di men sional

man i fold .

Next we note that any iso topy of  (resp. ) can be re al ized by ho mo top ing the vec tor

field, and thus the met ric , in side  (resp. ). Again, this

uses the prod uct struc ture on  and just spreads the iso topy out across

this prod uct. Fur ther more, any ho mo topy of  or  moves  and  by (in de pen dent)

iso topies in . Thus we can apply the trans ver sal ity the o rem to say that  (or )

can be ho mo toped to make  trans verse in  and that, if they are trans verse,

a small per tur ba tion of  or  will keep them trans verse.

So now we as sume that  and  in ter sect trans versely in  and now we count the

di men sion of their in ter sec tion. Re call that, for trans verse in ter sec tions, the mantra is

“codi men sions add”.  has di men sion  in the -man i fold, hence codi men‐ 

sion .  has di men sion , hence codi men sion . Thus  has codi men sion 

, hence di men sion . This is neg a tive if  or 

. Thus we can as sume that  as long as .

As a corol lary, if a cobor dism  has a Morse func tion with all crit i cal points of the same

index, then  can be built as a han dle body with all the han dles at tached at once to the

bot tom level.

Note that if  then  has di men sion , i.e. points, in which case we have

iso lated flow lines from  down to . In terms of han dles, the han dle for  “goes over” the

han dle for ; we have seen many ex am ples of this when  and .

Now we want to con sider what sorts of in ter sec tions be tween  and  to ex pect as we

move through a -pa ra me ter fam ily of Morse func tions and gra di ent-like vec tor fields.

The first case to con sider is where  stays fixed, but the vec tor field varies as , 

. Now con sider  and  in , de fined by , where 

p, q ∈ X f Xn k l

f(p) < f(q)

Ap

Dq Ap Dq

g V

f−1(f(p)) f−1(f(q))

f−1(y) y ∈ (f(p), f(q))

A
y
p = Ap ∩ f−1(y) ≅Sn−k−1 D

y
q = Dq ∩ f−1(y) ≅S l−1 (n − 1)

f−1(y)

A
y
p D

y
q

g f−1[y − 2ϵ, y − ϵ] f−1[y + ϵ, y + 2ϵ]

f−1[y − 2ϵ, y − ϵ]

g V A
y
p D

y
q

f−1(y) g V

A
y
p ∩ D

y
q f−1(y)

g V

A
y
p D

y
q f−1(y)

A
y
p n − k − 1 (n − 1)

k D
y
q l − 1 n − l A

y
p ∩ D

y
q

n + k − l n − 1 − (n + k − l) = l − k − 1 l < k + 1

l ≤ k Ap ∩ Dq = ∅ l ≤ k

X

X

l = k + 1 A
y
p ∩ D

y
q 0

q p q

p k = 1 l = 2

Ap Dq

1

f Vt t ∈ [0, 1]

Ap Dq [0, 1] × X Ap ∩ {t} × X = {t} × Ap,t Ap,t



is the as cend ing man i fold for  with re spect to  (and sim i lary for . A sim i lar ar gu‐ 

ment to the pre ced ing case shows that, if we want to move  through an iso topy in 

 (re main ing trans verse to the slices ), we can do this by ho mo top ing

the ho mo topy  in a slab  (and com pa ra ble state ment for . And, sim i‐ 

larly, any ho mo topy of the ho mo topy  moves these man i folds by iso topies. Thus, again,

trans ver sal ity ap plies and we can as sume  is trans verse.

Now when we count di men sions we dis cover that this in ter sec tion, if trans verse, should

be empty if . Thus, for ex am ple, in a -pa ra me ter fam ily we do not ex pect a crit i cal

point of index  to sud denly de velop a flow line down to a crit i cal point of index . But,

if , then we ex pect  to have di men sion . This means that

at iso lated times, there will be a sin gle point of in ter sec tion be tween  and  or,

equiv a lently, a sin gle flow line from  down to . Such events are called han dle slides.

Below is a sim ple ex am ple that jus ti fies this term; we will dis cuss han dle slides more care‐ 

fully next time.

(YouTube link)
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We spent today’s class with stu dents pre sent ing so lu tions and/or half-baked ideas about

ex er cises. We had a com plete so lu tion to all of the var i ous  prob lems. The prob‐ 

lem of show ing that the space of met rics adapted to a fixed Morse func tion is con nected

(by which I re ally meant path-con nected) was re duced to the fol low ing ques tion:

Let  be a stan dard Morse model func tion  on  and let  be any

ori en ta tion-pre serv ing diff eo mor phism send ing  to  and re spect ing , i.e. .

Show that  is iso topic to the iden tity through a -pa ra me ter fam ily of maps  with 

 and .

A sug ges tion for show ing that  is sta ble was to use the fact that any func tion

(in par tic u lar, a -pa ra me ter fam ily ) can be ap prox i mated by poly no mi als. An other ap‐ 

proach sug gested was to show that , for small , has “the same kind of sin gu lar ity” that 

 has, where “same kind” means  and .

That’s it.
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We have seen that, in a -pa ra me ter fam ily  of gra di ent-like vec tor fields for a fixed

Morse func tion , we should gener i cally ex pect iso lated times at which as cend ing and de‐ 

scend ing man i folds of crit i cal points of the same index in ter sect in in ter me di ate reg u lar

lev els. It is not hard to gen er al ize this to the case where the func tion varies as well, in

which case we have a pair . As long as  re mains Morse and crit i cal val ues do not

cross, we can apply all the same trans ver sal ity ar gu ments from be fore, let ting  be the

de scend ing man i fold in  of an arc of crit i cal points la belled .

We also iden ti fied these iso lated times as han dle slides and showed one ex am ple where

the total di men sion is  and the crit i cal points have index . We want to in ves ti‐ 

gate this more gen er ally.

The first point to make is that, in call ing these events “han dle slides”, we are re ally de‐ 

scrib ing a par tic u la tion op er a tion on han dle at tach ing maps (framed em bed ded spheres),

and claim ing that this op er a tion is ex actly how the han dle at tach ing maps change from

be fore one of these iso lated time events to after the event. So first I will at tempt to de‐ 

scribe this op er a tion.

Ex er cise: Gen er al ize the fol low ing ex am ples to an op er a tion that makes sense for any di‐ 

men sion  and any index  with . We ex clude  and  be cause you need

some as cend ing and some de scend ing man i fold to get the dis cus sion started. We ex clude 

 be cause we have al ready dis cussed it and be cause it is hard to make sense of many

smooth op er a tions on -man i folds; e.g. what is the con nected sum of two ’s? The op‐ 

er a tion we are look ing for should take two framed ’s,  and , in a -man i‐ 

fold, and pro duce a new framed   which re sults from slid ing  over .

Ex am ple: n=3, k=2 : Here  and  are framed ’s in a sur face , in which case

there is only one fram ing so we ig nore the fram ing com pletely. The re sult ing  is an em‐

bed ded  in  such that  to gether bound a pair of pants. This is il lus‐ 

trated below:
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In this lec ture I then pro ceeded to de scribe the 4-di men sional ver sion , , but

once again the ex po si tion im proved with the re view in the next lec ture, so I’ll save it for

the next post.

(YouTube link)

n = 4 k = 2

https://youtube.com/watch?v=mpbB3dZmSoo
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Today’s goal is to pre sent the han dle slide move in di men sion , for -han dles, and then

jus tify this move in both di men sions  and . I claim that, in both the cases 

and , the move can be de scribed as fol lows (bear ing in mind that the fram ing

is ir rel e vant when ): Let  be the framed de scend ing ’s for index 

crit i cal points  and , resp., with , and  a level set below  and . Then the

re sult of slid ing  over  is that  is re placed by , where  and 

 is an em bed ded pair of pants re al iz ing the given fram ings of  and . The

fram ing of  that re sults from the slide is ex actly the fram ing com ing from . Below is

an ex am ple when , so that the draw ing takes place in a -man i fold:

Now we want to si mul ta ne ously jus tify the fol low ing two state ments: (1) If two han dle di‐ 

a grams are re lated by a han dle slide then they de scribe diff eo mor phic man i folds. (2) If

two Morse func tions (with gra di ent-like vec tor fields) are re lated by a ho mo topy in which

the func tion re mains Morse, then their cor re spond ing han dle di a grams are re lated by han‐ 

dle slides. To do this, con sider two crit i cal points  and  of the same index  with 

 and let us fol low their as cend ing and de scend ing man i folds in two diff er ent

reg u lar level sets:  and , with . We focus on times just

be fore and just after a time  at which there is a sin gle point of in ter sec tion be tween 

and  in  (a trans verse in ter sec tion be tween  and ). In ,  moves

around by an iso topy, cross ing  (trans versely in time) at time . But in , 

makes a dis crete jump some how from be fore  to after. As  crosses , it sweeps out

an an nu lus punc tured once by . Re mov ing a disk neigh bor hood of this punc ture from

the an nu lus, we get a pair of pants  with bound ary the union of  be‐ 

fore ,  after , and the bound ary of the disk we re moved from the an nu lus. Since 

is dis joint from , it can flow down to . The “be fore” and “after”ver sions of 
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flow down to be come “be fore” and “after” at tach ing spheres for  (framed by ) while the

bound ary of the disk we re moved flows down to be come a par al lel push-off of the at tach‐ 

ing sphere for .

This demon strates di rectly that the sin gu lar event in the Morse func tion movie cor re‐ 

sponds to a han dle slide in the han dle di a gram. To go the other way, note that the pre vi‐ 

ous para graph also pro vides a con struc tion of a Morse func tion movie that cor re sponds to

a given hande slide; this, to gether with the fact that han dle di a grams uniquely de ter mine

man i folds up to diff eo mor phism, shows that, when two di a grams are re lated by han dle

slides, then they de scribe diff eo mor phic man i folds.

I claim that the above ar gu ment also works in higher di men sions and diff er ent in dices,

but leave that to the reader to sort out. Also, as a sug ges tion, it might be use ful to con‐ 

struct the pair of pants and its higher-di men sional gen er al iza tions as a framed cobor dism

in , with a sin gle crit i cal point for the Morse func tion aris ing from pro jec‐ 

tion to the  fac tor.

(YouTube link) 

q Σ

p

[0, 1] × f−1(y0)

[0, 1]

https://youtube.com/watch?v=fQ7qaFP4AzA
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We have been a bit un clear, when dis cussing han dle slides, about whether we are think‐ 

ing of fam i lies  of Morse func tions paired with gra di ent-like vec tor fields or of a

fixed Morse func tion  with a fam ily of vec tor fields . I claim that this dis tinc tion is not

im por tant due to the fol low ing fact:

Lemma: If  is Morse for all  (with dis tinct crit i cal val ues for all ), with 

, then there exist iso topies  and , with  and  iden‐ 

tity maps,  such that .

Thus, as long as there are no cross ings of crit i cal val ues, we may pull every thing back by 

 and  to treat  as con stant in . When there are cross ings, in which case we have no

hope of mak ing the func tion con stant in time, we can arrange that no han dle slides occur

in a short time in ter val around the cross ing.

It is ob vi ous that two Morse func tions can not in gen eral be con nected by a path of Morse

func tions, since crit i cal points re main dis crete and there fore the num ber of crit i cal points

would need to be con stant. How ever, they can be con nected by a generic ho mo topy,

which we de fine as fol lows:

De fi  n i tion: a generic ho mo topy is a ho mo topy , , be tween Morse

func tions  and  such that, near every point  and time , there exist co or di nates

 around  and -de pen dent co or di nates  around , and -de pen‐ 

dent co or di nates  around , with re spect to which  has one of the fol low ing three

local mod els (in which we sup press the de pen dence of the ’s and  on ):

1. ; i.e. there is no sin gu lar ity here.

2. ; i.e.  is an index  Morse sin gu lar ity

for  and there is a path , , with  such that  is an index 

 Morse sin gu lar ity for .

3. ; i.e. a birth or death of

a pair of crit i cal points of index  and  oc curs at  at time .

The claim, which we offer with out proof or per haps defer to a later date, is that generic

ho mo topies are generic and sta ble. (This em pha sizes, of course, the poor choice of the

ad jec tive “generic” in the de fi  n i tion.) Here sta ble means that a generic ho mo topy is still a

generic ho mo topy after a small per tur ba tion, and generic means that any ho mo topy can

be per turbed to generic by an ar bi trar ily small per tur ba tion.

(ft,Vt)

f Vt

ft : X → [0, 1] t t

t ∈ [0, 1] ϕt : X → X ψt : [0, 1] → [0, 1] ϕ0 ψ0

ft = ψt ∘ f0 ∘ ϕt

ϕt ψt ft t

ft : X → [0, 1] t ∈ [0, 1]

f0 f1 p ∈ X t0

τ t0 ∈ [0, 1] τ xτ1, … ,xτn p ∈ X τ

yτ ft0(p) ft

xi y τ

(x1, … ,xn) ↦ x1

(x1, … ,xn) ↦ −x2
1 − … − x2

k + x2
k+1 + … + x2

n p k

fτ0
pt t ∈ (t0 − ϵ, t0 + ϵ) p = p0 pt

k ft

(x1, … ,xn) ↦ −x2
1 − … − x2

k + xk + 13 − τxk+1 + x2
k+2 + …x2

n

k k + 1 p t0



Thus, be tween any two Morse func tions, we can al ways find a ho mo topy which re mains

Morse ex cept at iso lated times when a birth or death oc curs (and, if we in sist that Morse

func tions have dis crete crit i cal val ues then we also count crit i cal value cross ings as spe‐ 

cial iso lated non-Morse events).

Im me di ately after a birth has oc curred, pro duc ing crit i cal points  and  with in dices 

and , re spec tively, then  and there are no crit i cal val ues in .

Also, there ex ists a gra di ent-like vec tor field with re spect to which there is a sin gle flow

line from  down to ; i.e.  is a sin gle point in  for some . In

terms of han dles, this means that the han dle at tach ing sphere  for  “goes over” the

han dle  for  once, in ter sect ing the belt sphere  at one point. We

have al ready ex am ples of such di a grams.

In the next post I’ll ex plain the con verse of this, namely that if a -han dle goes over

a -han dle once then we can can cel them; Gompf and Stip sicz give a non-Morse the ory

proof which is more basic, but we will con struct a generic ho mo topy can celling the two

crit i cal points.

(YouTube link)

p q k

k + 1 f(p) < f(q) (f(p), f(q))

q p A
y
p ∩ D

y
q f−1(y) y ∈ (f(p), f(q))

Sk q

Bk × Bn−k p {0} × Sn−k−1

(k + 1)

k

https://youtube.com/watch?v=fMKio1SdRoc
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Note that the as ser tion that  and , the as cend ing and de scend ing spheres for crit i cal

points  and  in an in ter me di ate reg u lar level , meet at a sin gle point, is equiv a lent to

the as ser tion that there is a unique gra di ent flow line from  down to .

In this entry we want to sketch the proof of the fol low ing:

The o rem: If  is Morse with ex actly two crit i cal points  and  with a unique

gra di ent flow line from  down to , with as cend ing and de scend ing man i folds meet ing

trans versely, then there is a generic ho mo topy  from  to  which can cels  and .

Sketch of proof: Here’s what I send in lec ture, but ac tu ally it’s sub tly wrong: Find an

arc  em bed ded in  con tain ing this unique flow line as its mid dle third 

, with  at  and  at , and with  con tained in the de scend ing man i fold for 

and  con tained in the as cend ing man i fold for . Thus, up to repa ram e triza tion, 

looks like . Now we claim that there is a tubu lar neigh bor hood  of , with

co or di nate  on  and co or di nates , where  is the index of ,

such that . The idea is that, along the

given flow line,  and  in ter sect trans versely, so that the de scend ing co or di nates 

 come from  and the as cend ing co or di nates  come from . Once

we have this local model, we can can cel the crit i cal points using . This is il‐ 

lus trated below:

So what is wrong with this ar gu ment? The first prob lem is that, yes, one may find a

local patch (in this case a tubu lar neigh bor hood of an arc) in which there is a cer tain

local model (that much is cor rect in the above ar gu ment), but then one can not blithely

apply a poly no mial per tur ba tion be cause poly no mi als are not com pactly sup ported, and

we should be con struct ing a ho mo topy which is con stant out side the given patch. Thus

A
y
p D

y
q

p q y

q p

f : X → [0, 1] p q

q p

ft f0 = f f1 p q

A ≅[0, 1] X [1/3, 2/3]

q 1/3 p 2/3 [0, 2/3) q

(1/3, 1] p f|A
f(x) = x3 − x ν A

xk+1 A x1, … ,xk,xk+2, … ,xn k p

f|ν = −x2
1 − … − x2

k + x3
k+1 − xk+1 + x2

k+2 + … + x2
n

Ap Dq

x1, … ,xk Dq xk+2, … ,xn Ap

x3
k+1 − txk+1



one should cut if off with a bump func tion. But then, when cut ting things off with a

bump func tion, one has the po ten tial to ac ci den tally cre ate new crit i cal points, as il lus‐ 

trated in this pic ture:

So I owe a proper sketch of this proof - the point is that one re ally does need to work

with the full de scend ing man i fold for  and the full as cend ing man i fold for . q p □


