sortix-mirror/kernel/thread.cpp
Jonas 'Sortie' Termansen 2e03bd94d3 Add protection against sigreturn oriented programming (SROP).
This change hardens against invalid calls to sigreturn, which is a very
useful gadget when compromising a process. The system call now verifies
it is a real return from a signal and aborts the process otherwise. This
should render such attacks impossible in threads that are not servicing a
signal, and infeasible in threads that are handling signals they are yet to
return from.

The kernel now keeps track for each thread how many signals are being
handled but haven't returned yet.

Each thread now has a random signal value. It is re-randomized when the
thread handles a signal and the current signal counter is zero. This is
xorred with the context address and used as canary on the stack during
signal dispatch, protecting the saved context on the stack. This works
mostly like the regular stack protector.

The kernel now keeps track of the stack pointer for a single handled
signal per thread. It doesn't seem worth it to keep track of multiple
handled signals, as more than one is rare. Note that each delivered signal
will not necessarily result in a sigreturn because it is valid for a thread
to longjmp(3) out of a signal handler to a valid jmp_buf.

The sigreturn system call will abort if either:

- It was not called from the kernel sigreturn page.
- The thread is not currently processing a signal.
- The thread is processing a single signal, and the stack pointer did not
  have the expected value.
- It fails to read the context on the stack.
- The canary is wrong.
2016-05-15 22:43:29 +02:00

421 lines
12 KiB
C++

/*
* Copyright (c) 2011, 2012, 2013, 2014, 2015, 2016 Jonas 'Sortie' Termansen.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* thread.cpp
* Describes a thread belonging to a process.
*/
#include <sys/wait.h>
#include <assert.h>
#include <errno.h>
#include <signal.h>
#include <stdlib.h>
#include <string.h>
#include <sortix/exit.h>
#include <sortix/mman.h>
#include <sortix/signal.h>
#include <sortix/kernel/copy.h>
#include <sortix/kernel/interrupt.h>
#include <sortix/kernel/kernel.h>
#include <sortix/kernel/kthread.h>
#include <sortix/kernel/memorymanagement.h>
#include <sortix/kernel/process.h>
#include <sortix/kernel/scheduler.h>
#include <sortix/kernel/syscall.h>
#include <sortix/kernel/thread.h>
#include <sortix/kernel/time.h>
#if defined(__i386__) || defined(__x86_64__)
#include "x86-family/float.h"
#endif
void* operator new (size_t /*size*/, void* address) throw()
{
return address;
}
namespace Sortix {
Thread* AllocateThread()
{
uint8_t* allocation = (uint8_t*) malloc(sizeof(class Thread) + 16);
if ( !allocation )
return NULL;
uint8_t* aligned = allocation;
if ( ((uintptr_t) aligned & 0xFUL) )
aligned = (uint8_t*) (((uintptr_t) aligned + 16) & ~0xFUL);
assert(!((uintptr_t) aligned & 0xFUL));
Thread* thread = new (aligned) Thread;
assert(!((uintptr_t) thread->registers.fpuenv & 0xFUL));
return thread->self_allocation = allocation, thread;
}
void FreeThread(Thread* thread)
{
uint8_t* allocation = thread->self_allocation;
thread->~Thread();
free(allocation);
}
Thread::Thread()
{
assert(!((uintptr_t) registers.fpuenv & 0xFUL));
system_tid = (uintptr_t) this;
yield_to_tid = 0;
id = 0; // TODO: Make a thread id.
process = NULL;
prevsibling = NULL;
nextsibling = NULL;
scheduler_list_prev = NULL;
scheduler_list_next = NULL;
state = NONE;
memset(&registers, 0, sizeof(registers));
kernelstackpos = 0;
kernelstacksize = 0;
signal_count = 0;
signal_single_frame = 0;
signal_canary = 0;
kernelstackmalloced = false;
pledged_destruction = false;
force_no_signals = false;
signal_single = false;
sigemptyset(&signal_pending);
sigemptyset(&signal_mask);
memset(&signal_stack, 0, sizeof(signal_stack));
signal_stack.ss_flags = SS_DISABLE;
// execute_clock initialized in member constructor.
// system_clock initialized in member constructor.
Time::InitializeThreadClocks(this);
}
Thread::~Thread()
{
if ( process )
process->OnThreadDestruction(this);
assert(CurrentThread() != this);
if ( kernelstackmalloced )
delete[] (uint8_t*) kernelstackpos;
}
Thread* CreateKernelThread(Process* process, struct thread_registers* regs)
{
assert(process && regs && process->addrspace);
#if defined(__x86_64__)
if ( regs->fsbase >> 48 != 0x0000 && regs->fsbase >> 48 != 0xFFFF )
return errno = EINVAL, (Thread*) NULL;
if ( regs->gsbase >> 48 != 0x0000 && regs->gsbase >> 48 != 0xFFFF )
return errno = EINVAL, (Thread*) NULL;
#endif
Thread* thread = AllocateThread();
if ( !thread )
return NULL;
memcpy(&thread->registers, regs, sizeof(struct thread_registers));
kthread_mutex_lock(&process->threadlock);
// Create the family tree.
thread->process = process;
Thread* firsty = process->firstthread;
if ( firsty )
firsty->prevsibling = thread;
thread->nextsibling = firsty;
process->firstthread = thread;
kthread_mutex_unlock(&process->threadlock);
return thread;
}
static void SetupKernelThreadRegs(struct thread_registers* regs,
Process* process,
void (*entry)(void*),
void* user,
uintptr_t stack,
size_t stack_size)
{
memset(regs, 0, sizeof(*regs));
size_t stack_alignment = 16;
while ( stack & (stack_alignment-1) )
{
assert(stack_size);
stack++;
stack_size--;
}
stack_size &= ~(stack_alignment-1);
#if defined(__i386__)
uintptr_t* stack_values = (uintptr_t*) (stack + stack_size);
assert(5 * sizeof(uintptr_t) <= stack_size);
/* -- 16-byte aligned -- */
/* -1 padding */
stack_values[-2] = (uintptr_t) 0; /* null eip */
stack_values[-3] = (uintptr_t) 0; /* null ebp */
stack_values[-4] = (uintptr_t) user; /* thread parameter */
/* -- 16-byte aligned -- */
stack_values[-5] = (uintptr_t) kthread_exit; /* return to kthread_exit */
/* upcoming ebp */
/* -7 padding */
/* -8 padding */
/* -- 16-byte aligned -- */
regs->eip = (uintptr_t) entry;
regs->esp = (uintptr_t) (stack_values - 5);
regs->eax = 0;
regs->ebx = 0;
regs->ecx = 0;
regs->edx = 0;
regs->edi = 0;
regs->esi = 0;
regs->ebp = (uintptr_t) (stack_values - 3);
regs->cs = KCS | KRPL;
regs->ds = KDS | KRPL;
regs->ss = KDS | KRPL;
regs->eflags = FLAGS_RESERVED1 | FLAGS_INTERRUPT | FLAGS_ID;
regs->kerrno = 0;
regs->signal_pending = 0;
regs->kernel_stack = stack + stack_size;
regs->cr3 = process->addrspace;
memcpy(regs->fpuenv, Float::fpu_initialized_regs, 512);
#elif defined(__x86_64__)
uintptr_t* stack_values = (uintptr_t*) (stack + stack_size);
assert(3 * sizeof(uintptr_t) <= stack_size);
stack_values[-1] = (uintptr_t) 0; /* null rip */
stack_values[-2] = (uintptr_t) 0; /* null rbp */
stack_values[-3] = (uintptr_t) kthread_exit; /* return to kthread_exit */
regs->rip = (uintptr_t) entry;
regs->rsp = (uintptr_t) (stack_values - 3);
regs->rax = 0;
regs->rbx = 0;
regs->rcx = 0;
regs->rdx = 0;
regs->rdi = (uintptr_t) user;
regs->rsi = 0;
regs->rbp = 0;
regs->r8 = 0;
regs->r9 = 0;
regs->r10 = 0;
regs->r11 = 0;
regs->r12 = 0;
regs->r13 = 0;
regs->r14 = 0;
regs->r15 = 0;
regs->cs = KCS | KRPL;
regs->ds = KDS | KRPL;
regs->ss = KDS | KRPL;
regs->rflags = FLAGS_RESERVED1 | FLAGS_INTERRUPT | FLAGS_ID;
regs->kerrno = 0;
regs->signal_pending = 0;
regs->kernel_stack = stack + stack_size;
regs->cr3 = process->addrspace;
memcpy(regs->fpuenv, Float::fpu_initialized_regs, 512);
#else
#warning "You need to add kernel thread register initialization support"
#endif
}
Thread* CreateKernelThread(Process* process, void (*entry)(void*), void* user,
size_t stacksize)
{
const size_t DEFAULT_KERNEL_STACK_SIZE = 8 * 1024UL;
if ( !stacksize )
stacksize = DEFAULT_KERNEL_STACK_SIZE;
uint8_t* stack = new uint8_t[stacksize];
if ( !stack )
return NULL;
struct thread_registers regs;
SetupKernelThreadRegs(&regs, process, entry, user, (uintptr_t) stack, stacksize);
Thread* thread = CreateKernelThread(process, &regs);
if ( !thread ) { delete[] stack; return NULL; }
thread->kernelstackpos = (uintptr_t) stack;
thread->kernelstacksize = stacksize;
thread->kernelstackmalloced = true;
return thread;
}
Thread* CreateKernelThread(void (*entry)(void*), void* user, size_t stacksize)
{
return CreateKernelThread(CurrentProcess(), entry, user, stacksize);
}
void StartKernelThread(Thread* thread)
{
Scheduler::SetThreadState(thread, ThreadState::RUNNABLE);
}
Thread* RunKernelThread(Process* process, struct thread_registers* regs)
{
Thread* thread = CreateKernelThread(process, regs);
if ( !thread )
return NULL;
StartKernelThread(thread);
return thread;
}
Thread* RunKernelThread(Process* process, void (*entry)(void*), void* user,
size_t stacksize)
{
Thread* thread = CreateKernelThread(process, entry, user, stacksize);
if ( !thread )
return NULL;
StartKernelThread(thread);
return thread;
}
Thread* RunKernelThread(void (*entry)(void*), void* user, size_t stacksize)
{
Thread* thread = CreateKernelThread(entry, user, stacksize);
if ( !thread )
return NULL;
StartKernelThread(thread);
return thread;
}
int sys_exit_thread(int requested_exit_code,
int flags,
const struct exit_thread* user_extended)
{
if ( flags & ~(EXIT_THREAD_ONLY_IF_OTHERS |
EXIT_THREAD_UNMAP |
EXIT_THREAD_ZERO |
EXIT_THREAD_TLS_UNMAP |
EXIT_THREAD_PROCESS |
EXIT_THREAD_DUMP_CORE) )
return errno = EINVAL, -1;
if ( (flags & EXIT_THREAD_ONLY_IF_OTHERS) && (flags & EXIT_THREAD_PROCESS) )
return errno = EINVAL, -1;
Thread* thread = CurrentThread();
Process* process = CurrentProcess();
struct exit_thread extended;
if ( !user_extended )
memset(&extended, 0, sizeof(extended));
else if ( !CopyFromUser(&extended, user_extended, sizeof(extended)) )
return -1;
extended.unmap_size = Page::AlignUp(extended.unmap_size);
kthread_mutex_lock(&thread->process->threadlock);
bool is_others = false;
for ( Thread* iter = thread->process->firstthread;
!is_others && iter;
iter = iter->nextsibling )
{
if ( iter == thread )
continue;
if ( iter->pledged_destruction )
continue;
is_others = true;
}
if ( !(flags & EXIT_THREAD_ONLY_IF_OTHERS) || is_others )
thread->pledged_destruction = true;
bool are_threads_exiting = false;
if ( (flags & EXIT_THREAD_PROCESS) || !is_others )
process->threads_exiting = true;
else if ( process->threads_exiting )
are_threads_exiting = true;
kthread_mutex_unlock(&thread->process->threadlock);
// Self-destruct if another thread began exiting the process.
if ( are_threads_exiting )
kthread_exit();
if ( (flags & EXIT_THREAD_ONLY_IF_OTHERS) && !is_others )
return errno = ESRCH, -1;
if ( flags & EXIT_THREAD_UNMAP &&
Page::IsAligned((uintptr_t) extended.unmap_from) &&
extended.unmap_size )
{
ScopedLock lock(&process->segment_lock);
extended.unmap_size = Page::AlignDown(extended.unmap_size);
Memory::UnmapMemory(process, (uintptr_t) extended.unmap_from,
extended.unmap_size);
Memory::Flush();
// TODO: The segment is not actually removed!
}
if ( flags & EXIT_THREAD_TLS_UNMAP &&
Page::IsAligned((uintptr_t) extended.tls_unmap_from) &&
extended.tls_unmap_size )
{
ScopedLock lock(&process->segment_lock);
extended.tls_unmap_size = Page::AlignDown(extended.tls_unmap_size);
Memory::UnmapMemory(process, (uintptr_t) extended.tls_unmap_from,
extended.tls_unmap_size);
Memory::Flush();
}
if ( flags & EXIT_THREAD_ZERO )
ZeroUser(extended.zero_from, extended.zero_size);
if ( !is_others )
{
// Validate the requested exit code such that the process can't exit
// with an impossible exit status or that it wasn't actually terminated.
int the_nature = WNATURE(requested_exit_code);
int the_status = WEXITSTATUS(requested_exit_code);
int the_signal = WTERMSIG(requested_exit_code);
if ( the_nature == WNATURE_EXITED )
the_signal = 0;
else if ( the_nature == WNATURE_SIGNALED )
{
if ( the_signal == 0 /* null signal */ ||
the_signal == SIGSTOP ||
the_signal == SIGTSTP ||
the_signal == SIGTTIN ||
the_signal == SIGTTOU ||
the_signal == SIGCONT )
the_signal = SIGKILL;
the_status = 128 + the_signal;
}
else
{
the_nature = WNATURE_SIGNALED;
the_signal = SIGKILL;
}
requested_exit_code = WCONSTRUCT(the_nature, the_status, the_signal);
thread->process->ExitWithCode(requested_exit_code);
}
kthread_exit();
}
} // namespace Sortix