sortix-mirror/kernel/process.cpp
Jonas 'Sortie' Termansen 2e03bd94d3 Add protection against sigreturn oriented programming (SROP).
This change hardens against invalid calls to sigreturn, which is a very
useful gadget when compromising a process. The system call now verifies
it is a real return from a signal and aborts the process otherwise. This
should render such attacks impossible in threads that are not servicing a
signal, and infeasible in threads that are handling signals they are yet to
return from.

The kernel now keeps track for each thread how many signals are being
handled but haven't returned yet.

Each thread now has a random signal value. It is re-randomized when the
thread handles a signal and the current signal counter is zero. This is
xorred with the context address and used as canary on the stack during
signal dispatch, protecting the saved context on the stack. This works
mostly like the regular stack protector.

The kernel now keeps track of the stack pointer for a single handled
signal per thread. It doesn't seem worth it to keep track of multiple
handled signals, as more than one is rare. Note that each delivered signal
will not necessarily result in a sigreturn because it is valid for a thread
to longjmp(3) out of a signal handler to a valid jmp_buf.

The sigreturn system call will abort if either:

- It was not called from the kernel sigreturn page.
- The thread is not currently processing a signal.
- The thread is processing a single signal, and the stack pointer did not
  have the expected value.
- It fails to read the context on the stack.
- The canary is wrong.
2016-05-15 22:43:29 +02:00

1697 lines
45 KiB
C++

/*
* Copyright (c) 2011, 2012, 2013, 2014, 2015, 2016 Jonas 'Sortie' Termansen.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* process.cpp
* A named collection of threads.
*/
#include <sys/wait.h>
#include <assert.h>
#include <ctype.h>
#include <errno.h>
#include <limits.h>
#include <msr.h>
#include <scram.h>
#include <signal.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <sortix/clock.h>
#include <sortix/fcntl.h>
#include <sortix/fork.h>
#include <sortix/mman.h>
#include <sortix/resource.h>
#include <sortix/signal.h>
#include <sortix/stat.h>
#include <sortix/unistd.h>
#include <sortix/uthread.h>
#include <sortix/wait.h>
#include <sortix/kernel/addralloc.h>
#include <sortix/kernel/copy.h>
#include <sortix/kernel/descriptor.h>
#include <sortix/kernel/dtable.h>
#include <sortix/kernel/elf.h>
#include <sortix/kernel/ioctx.h>
#include <sortix/kernel/kernel.h>
#include <sortix/kernel/kthread.h>
#include <sortix/kernel/memorymanagement.h>
#include <sortix/kernel/mtable.h>
#include <sortix/kernel/process.h>
#include <sortix/kernel/ptable.h>
#include <sortix/kernel/refcount.h>
#include <sortix/kernel/scheduler.h>
#include <sortix/kernel/sortedlist.h>
#include <sortix/kernel/string.h>
#include <sortix/kernel/syscall.h>
#include <sortix/kernel/thread.h>
#include <sortix/kernel/time.h>
#include <sortix/kernel/worker.h>
#if defined(__i386__) || defined(__x86_64__)
#include "x86-family/float.h"
#include "x86-family/gdt.h"
#endif
namespace Sortix {
Process::Process()
{
program_image_path = NULL;
addrspace = 0;
pid = 0;
nicelock = KTHREAD_MUTEX_INITIALIZER;
nice = 0;
idlock = KTHREAD_MUTEX_INITIALIZER;
uid = euid = 0;
gid = egid = 0;
umask = 0022;
ptrlock = KTHREAD_MUTEX_INITIALIZER;
// root set to null reference in the member constructor.
// cwd set to null reference in the member constructor.
// mtable set to null reference in the member constructor.
// dtable set to null reference in the member constructor.
// ptable set to null reference in the member constructor.
resource_limits_lock = KTHREAD_MUTEX_INITIALIZER;
for ( size_t i = 0; i < RLIMIT_NUM_DECLARED; i++ )
{
resource_limits[i].rlim_cur = RLIM_INFINITY;
resource_limits[i].rlim_max = RLIM_INFINITY;
}
signal_lock = KTHREAD_MUTEX_INITIALIZER;
memset(&signal_actions, 0, sizeof(signal_actions));
for ( int i = 0; i < SIG_MAX_NUM; i++ )
{
sigemptyset(&signal_actions[i].sa_mask);
signal_actions[i].sa_handler = SIG_DFL;
signal_actions[i].sa_cookie = NULL;
signal_actions[i].sa_flags = 0;
}
sigemptyset(&signal_pending);
sigreturn = NULL;
parent = NULL;
prevsibling = NULL;
nextsibling = NULL;
firstchild = NULL;
zombiechild = NULL;
childlock = KTHREAD_MUTEX_INITIALIZER;
parentlock = KTHREAD_MUTEX_INITIALIZER;
zombiecond = KTHREAD_COND_INITIALIZER;
iszombie = false;
nozombify = false;
exit_code = -1;
group = NULL;
groupprev = NULL;
groupnext = NULL;
groupfirst = NULL;
groupparentlock = KTHREAD_MUTEX_INITIALIZER;
groupchildlock = KTHREAD_MUTEX_INITIALIZER;
groupchildleft = KTHREAD_COND_INITIALIZER;
grouplimbo = false;
firstthread = NULL;
threadlock = KTHREAD_MUTEX_INITIALIZER;
threads_exiting = false;
segments = NULL;
segments_used = 0;
segments_length = 0;
segment_write_lock = KTHREAD_MUTEX_INITIALIZER;
segment_lock = KTHREAD_MUTEX_INITIALIZER;
user_timers_lock = KTHREAD_MUTEX_INITIALIZER;
memset(&user_timers, 0, sizeof(user_timers));
// alarm_timer initialized in member constructor.
// execute_clock initialized in member constructor.
// system_clock initialized in member constructor.
// child_execute_clock initialized in member constructor.
// child_system_clock initialized in member constructor.
Time::InitializeProcessClocks(this);
alarm_timer.Attach(Time::GetClock(CLOCK_MONOTONIC));
}
Process::~Process()
{
if ( alarm_timer.IsAttached() )
alarm_timer.Detach();
delete[] program_image_path;
assert(!zombiechild);
assert(!firstchild);
assert(!addrspace);
assert(!segments);
assert(!dtable);
assert(!mtable);
assert(!cwd);
assert(!root);
assert(ptable);
ptable->Free(pid);
ptable.Reset();
}
void Process::BootstrapTables(Ref<DescriptorTable> dtable, Ref<MountTable> mtable)
{
ScopedLock lock(&ptrlock);
assert(!this->dtable);
assert(!this->mtable);
this->dtable = dtable;
this->mtable = mtable;
}
void Process::BootstrapDirectories(Ref<Descriptor> root)
{
ScopedLock lock(&ptrlock);
assert(!this->root);
assert(!this->cwd);
this->root = root;
this->cwd = root;
}
void Process__OnLastThreadExit(void* user);
void Process::OnThreadDestruction(Thread* thread)
{
assert(thread->process == this);
kthread_mutex_lock(&threadlock);
if ( thread->prevsibling )
thread->prevsibling->nextsibling = thread->nextsibling;
if ( thread->nextsibling )
thread->nextsibling->prevsibling = thread->prevsibling;
if ( thread == firstthread )
firstthread = thread->nextsibling;
if ( firstthread )
firstthread->prevsibling = NULL;
thread->prevsibling = thread->nextsibling = NULL;
bool threadsleft = firstthread;
kthread_mutex_unlock(&threadlock);
// We are called from the threads destructor, let it finish before we
// we handle the situation by killing ourselves.
if ( !threadsleft )
ScheduleDeath();
}
void Process::ScheduleDeath()
{
// All our threads must have exited at this point.
assert(!firstthread);
Worker::Schedule(Process__OnLastThreadExit, this);
}
// Useful for killing a partially constructed process without waiting for
// it to die and garbage collect its zombie. It is not safe to access this
// process after this call as another thread may garbage collect it.
void Process::AbortConstruction()
{
nozombify = true;
ScheduleDeath();
}
void Process__OnLastThreadExit(void* user)
{
return ((Process*) user)->OnLastThreadExit();
}
void Process::OnLastThreadExit()
{
LastPrayer();
}
void Process::DeleteTimers()
{
for ( timer_t i = 0; i < PROCESS_TIMER_NUM_MAX; i++ )
{
if ( user_timers[i].timer.IsAttached() )
{
user_timers[i].timer.Cancel();
user_timers[i].timer.Detach();
}
}
}
void Process::LastPrayer()
{
assert(this);
// This must never be called twice.
assert(!iszombie);
// This must be called from a thread using another address space as the
// address space of this process is about to be destroyed.
Thread* curthread = CurrentThread();
assert(curthread->process != this);
// This can't be called if the process is still alive.
assert(!firstthread);
// Disarm and detach all the timers in the process.
DeleteTimers();
if ( alarm_timer.IsAttached() )
{
alarm_timer.Cancel();
alarm_timer.Detach();
}
// We need to temporarily reload the correct addrese space of the dying
// process such that we can unmap and free its memory.
addr_t prevaddrspace = Memory::SwitchAddressSpace(addrspace);
ResetAddressSpace();
if ( dtable ) dtable.Reset();
if ( cwd ) cwd.Reset();
if ( root ) root.Reset();
if ( mtable ) mtable.Reset();
// Destroy the address space and safely switch to the replacement
// address space before things get dangerous.
Memory::DestroyAddressSpace(prevaddrspace);
addrspace = 0;
// Init is nice and will gladly raise our orphaned children and zombies.
Process* init = Scheduler::GetInitProcess();
assert(init);
kthread_mutex_lock(&childlock);
while ( firstchild )
{
ScopedLock firstchildlock(&firstchild->parentlock);
ScopedLock initlock(&init->childlock);
Process* process = firstchild;
firstchild = process->nextsibling;
process->parent = init;
process->prevsibling = NULL;
process->nextsibling = init->firstchild;
if ( init->firstchild )
init->firstchild->prevsibling = process;
init->firstchild = process;
process->nozombify = true;
}
// Since we have no more children (they are with init now), we don't
// have to worry about new zombie processes showing up, so just collect
// those that are left. Then we satisfiy the invariant !zombiechild that
// applies on process termination.
while ( zombiechild )
{
Process* zombie = zombiechild;
zombiechild = zombie->nextsibling;
zombie->nextsibling = NULL;
if ( zombiechild )
zombiechild->prevsibling = NULL;
zombie->nozombify = true;
zombie->WaitedFor();
}
kthread_mutex_unlock(&childlock);
iszombie = true;
bool zombify = !nozombify;
// Remove ourself from our process group.
kthread_mutex_lock(&groupchildlock);
if ( group )
group->NotifyMemberExit(this);
kthread_mutex_unlock(&groupchildlock);
// This class instance will be destroyed by our parent process when it
// has received and acknowledged our death.
kthread_mutex_lock(&parentlock);
if ( parent )
parent->NotifyChildExit(this, zombify);
kthread_mutex_unlock(&parentlock);
// If nobody is waiting for us, then simply commit suicide.
if ( !zombify )
WaitedFor();
}
void Process::WaitedFor()
{
kthread_mutex_lock(&parentlock);
parent = NULL;
kthread_mutex_unlock(&parentlock);
kthread_mutex_lock(&groupparentlock);
bool in_limbo = groupfirst && (grouplimbo = true);
kthread_mutex_unlock(&groupparentlock);
if ( !in_limbo )
delete this;
}
void Process::ResetAddressSpace()
{
ScopedLock lock1(&segment_write_lock);
ScopedLock lock2(&segment_lock);
assert(Memory::GetAddressSpace() == addrspace);
for ( size_t i = 0; i < segments_used; i++ )
Memory::UnmapRange(segments[i].addr, segments[i].size, PAGE_USAGE_USER_SPACE);
Memory::Flush();
segments_used = segments_length = 0;
free(segments);
segments = NULL;
}
void Process::NotifyMemberExit(Process* child)
{
assert(child->group == this);
kthread_mutex_lock(&groupparentlock);
if ( child->groupprev )
child->groupprev->groupnext = child->groupnext;
else
groupfirst = child->groupnext;
if ( child->groupnext )
child->groupnext->groupprev = child->groupprev;
kthread_cond_signal(&groupchildleft);
kthread_mutex_unlock(&groupparentlock);
child->group = NULL;
NotifyLeftProcessGroup();
}
void Process::NotifyLeftProcessGroup()
{
ScopedLock parentlock(&groupparentlock);
if ( !grouplimbo || groupfirst )
return;
grouplimbo = false;
delete this;
}
void Process::NotifyChildExit(Process* child, bool zombify)
{
kthread_mutex_lock(&childlock);
if ( child->prevsibling )
child->prevsibling->nextsibling = child->nextsibling;
if ( child->nextsibling )
child->nextsibling->prevsibling = child->prevsibling;
if ( firstchild == child )
firstchild = child->nextsibling;
if ( firstchild )
firstchild->prevsibling = NULL;
if ( zombify )
{
if ( zombiechild )
zombiechild->prevsibling = child;
child->prevsibling = NULL;
child->nextsibling = zombiechild;
zombiechild = child;
}
kthread_mutex_unlock(&childlock);
if ( zombify )
NotifyNewZombies();
}
void Process::NotifyNewZombies()
{
ScopedLock lock(&childlock);
DeliverSignal(SIGCHLD);
kthread_cond_broadcast(&zombiecond);
}
pid_t Process::Wait(pid_t thepid, int* status_ptr, int options)
{
// TODO: Process groups are not supported yet.
if ( thepid < -1 || thepid == 0 )
return errno = ENOSYS, -1;
ScopedLock lock(&childlock);
// A process can only wait if it has children.
if ( !firstchild && !zombiechild )
return errno = ECHILD, -1;
// Processes can only wait for their own children to exit.
if ( 0 < thepid )
{
// TODO: This is a slow but multithread safe way to verify that the
// target process has the correct parent.
bool found = false;
for ( Process* p = firstchild; !found && p; p = p->nextsibling )
if ( p->pid == thepid && !p->nozombify )
found = true;
for ( Process* p = zombiechild; !found && p; p = p->nextsibling )
if ( p->pid == thepid && !p->nozombify )
found = true;
if ( !found )
return errno = ECHILD, -1;
}
Process* zombie = NULL;
while ( !zombie )
{
for ( zombie = zombiechild; zombie; zombie = zombie->nextsibling )
if ( (thepid == -1 || thepid == zombie->pid) && !zombie->nozombify )
break;
if ( zombie )
break;
if ( options & WNOHANG )
return 0;
if ( !kthread_cond_wait_signal(&zombiecond, &childlock) )
return errno = EINTR, -1;
}
// Remove from the list of zombies.
if ( zombie->prevsibling )
zombie->prevsibling->nextsibling = zombie->nextsibling;
if ( zombie->nextsibling )
zombie->nextsibling->prevsibling = zombie->prevsibling;
if ( zombiechild == zombie )
zombiechild = zombie->nextsibling;
if ( zombiechild )
zombiechild->prevsibling = NULL;
thepid = zombie->pid;
// It is safe to access these clocks directly as the child process is no
// longer running at this point and the values are nicely frozen.
child_execute_clock.Advance(zombie->child_execute_clock.current_time);
child_system_clock.Advance(zombie->child_system_clock.current_time);
int status = zombie->exit_code;
if ( status < 0 )
status = WCONSTRUCT(WNATURE_SIGNALED, 128 + SIGKILL, SIGKILL);
zombie->WaitedFor();
if ( status_ptr )
*status_ptr = status;
return thepid;
}
pid_t sys_waitpid(pid_t pid, int* user_status, int options)
{
int status = 0;
pid_t ret = CurrentProcess()->Wait(pid, &status, options);
if ( 0 < ret && !CopyToUser(user_status, &status, sizeof(status)) )
return -1;
return ret;
}
void Process::ExitThroughSignal(int signal)
{
ExitWithCode(WCONSTRUCT(WNATURE_SIGNALED, 128 + signal, signal));
}
void Process::ExitWithCode(int requested_exit_code)
{
ScopedLock lock(&threadlock);
if ( exit_code == -1 )
exit_code = requested_exit_code;
// Broadcast SIGKILL to all our threads which will begin our long path
// of process termination. We simply can't stop the threads as they may
// be running in kernel mode doing dangerous stuff. This thread will be
// destroyed by SIGKILL once the system call returns.
for ( Thread* t = firstthread; t; t = t->nextsibling )
t->DeliverSignal(SIGKILL);
}
void Process::AddChildProcess(Process* child)
{
ScopedLock mylock(&childlock);
ScopedLock itslock(&child->parentlock);
assert(!child->parent);
assert(!child->nextsibling);
assert(!child->prevsibling);
child->parent = this;
child->nextsibling = firstchild;
child->prevsibling = NULL;
if ( firstchild )
firstchild->prevsibling = child;
firstchild = child;
}
Ref<MountTable> Process::GetMTable()
{
ScopedLock lock(&ptrlock);
assert(mtable);
return mtable;
}
Ref<DescriptorTable> Process::GetDTable()
{
ScopedLock lock(&ptrlock);
assert(dtable);
return dtable;
}
Ref<ProcessTable> Process::GetPTable()
{
ScopedLock lock(&ptrlock);
assert(ptable);
return ptable;
}
Ref<Descriptor> Process::GetRoot()
{
ScopedLock lock(&ptrlock);
assert(root);
return root;
}
Ref<Descriptor> Process::GetCWD()
{
ScopedLock lock(&ptrlock);
assert(cwd);
return cwd;
}
void Process::SetRoot(Ref<Descriptor> newroot)
{
ScopedLock lock(&ptrlock);
assert(newroot);
root = newroot;
}
void Process::SetCWD(Ref<Descriptor> newcwd)
{
ScopedLock lock(&ptrlock);
assert(newcwd);
cwd = newcwd;
}
Ref<Descriptor> Process::GetDescriptor(int fd)
{
ScopedLock lock(&ptrlock);
assert(dtable);
return dtable->Get(fd);
}
Process* Process::Fork()
{
assert(CurrentProcess() == this);
// TODO: This adds the new process to the process table, but it's not ready
// and functions that access this new process will be surprised that
// it's not fully constructed and really bad things will happen.
Process* clone = new Process;
if ( !clone )
return NULL;
if ( (clone->pid = (clone->ptable = ptable)->Allocate(clone)) < 0 )
{
delete clone;
return NULL;
}
struct segment* clone_segments = NULL;
// Fork the segment list.
if ( segments )
{
size_t segments_size = sizeof(struct segment) * segments_used;
if ( !(clone_segments = (struct segment*) malloc(segments_size)) )
{
delete clone;
return NULL;
}
memcpy(clone_segments, segments, segments_size);
}
// Fork address-space here and copy memory.
clone->addrspace = Memory::Fork();
if ( !clone->addrspace )
{
free(clone_segments);
delete clone;
return NULL;
}
// Now it's too late to clean up here, if anything goes wrong, we simply
// ask the process to commit suicide before it goes live.
clone->segments = clone_segments;
clone->segments_used = segments_used;
clone->segments_length = segments_used;
// Remember the relation to the child process.
AddChildProcess(clone);
// Add the new process to the current process group.
kthread_mutex_lock(&groupchildlock);
kthread_mutex_lock(&group->groupparentlock);
clone->group = group;
clone->groupprev = NULL;
if ( (clone->groupnext = group->groupfirst) )
group->groupfirst->groupprev = clone;
group->groupfirst = clone;
kthread_mutex_unlock(&group->groupparentlock);
kthread_mutex_unlock(&groupchildlock);
// Initialize everything that is safe and can't fail.
kthread_mutex_lock(&resource_limits_lock);
for ( size_t i = 0; i < RLIMIT_NUM_DECLARED; i++ )
clone->resource_limits[i] = resource_limits[i];
kthread_mutex_unlock(&resource_limits_lock);
kthread_mutex_lock(&nicelock);
clone->nice = nice;
kthread_mutex_unlock(&nicelock);
kthread_mutex_lock(&ptrlock);
clone->root = root;
clone->cwd = cwd;
kthread_mutex_unlock(&ptrlock);
kthread_mutex_lock(&idlock);
clone->uid = uid;
clone->gid = gid;
clone->euid = euid;
clone->egid = egid;
clone->umask = umask;
kthread_mutex_unlock(&idlock);
kthread_mutex_lock(&signal_lock);
memcpy(&clone->signal_actions, &signal_actions, sizeof(signal_actions));
sigemptyset(&clone->signal_pending);
clone->sigreturn = sigreturn;
kthread_mutex_unlock(&signal_lock);
// Initialize things that can fail and abort if needed.
bool failure = false;
kthread_mutex_lock(&ptrlock);
if ( !(clone->dtable = dtable->Fork()) )
failure = true;
//if ( !(clone->mtable = mtable->Fork()) )
// failure = true;
clone->mtable = mtable;
kthread_mutex_unlock(&ptrlock);
if ( !(clone->program_image_path = String::Clone(program_image_path)) )
failure = true;
// If the proces creation failed, ask the process to commit suicide and
// not become a zombie, as we don't wait for it to exit. It will clean
// up all the above resources and delete itself.
if ( failure )
{
clone->AbortConstruction();
return NULL;
}
return clone;
}
void Process::ResetForExecute()
{
DeleteTimers();
for ( int i = 0; i < SIG_MAX_NUM; i++ )
{
signal_actions[i].sa_flags = 0;
if ( signal_actions[i].sa_handler == SIG_DFL )
continue;
if ( signal_actions[i].sa_handler == SIG_IGN )
continue;
signal_actions[i].sa_handler = SIG_DFL;
}
sigreturn = NULL;
stack_t* signal_stack = &CurrentThread()->signal_stack;
memset(signal_stack, 0, sizeof(*signal_stack));
signal_stack->ss_flags = SS_DISABLE;
ResetAddressSpace();
}
bool Process::MapSegment(struct segment* result, void* hint, size_t size,
int flags, int prot)
{
// process->segment_write_lock is held at this point.
// process->segment_lock is held at this point.
if ( !size )
size = 1;
if ( !PlaceSegment(result, this, hint, size, flags) )
return false;
if ( !Memory::MapMemory(this, result->addr, result->size, result->prot = prot) )
{
// The caller is expected to self-destruct in this case, so the
// segment just created is not removed.
return false;
}
Memory::Flush();
return true;
}
int Process::Execute(const char* programname, const uint8_t* program,
size_t programsize, int argc, const char* const* argv,
int envc, const char* const* envp,
struct thread_registers* regs)
{
assert(argc != INT_MAX);
assert(envc != INT_MAX);
assert(CurrentProcess() == this);
char* programname_clone = String::Clone(programname);
if ( !programname_clone )
return -1;
ELF::Auxiliary aux;
addr_t entry = ELF::Load(program, programsize, &aux);
if ( !entry ) { delete[] programname_clone; return -1; }
delete[] program_image_path;
program_image_path = programname_clone; programname_clone = NULL;
uintptr_t userspace_addr;
size_t userspace_size;
Memory::GetUserVirtualArea(&userspace_addr, &userspace_size);
const size_t stack_size = 512UL * 1024UL;
void* stack_hint = (void*) (userspace_addr + userspace_size - stack_size);
const int stack_prot = PROT_READ | PROT_WRITE | PROT_KREAD | PROT_KWRITE | PROT_FORK;
if ( !aux.tls_mem_align )
aux.tls_mem_align = 1;
if ( Page::Size() < aux.tls_mem_align )
return errno = EINVAL, -1;
if ( !aux.uthread_align )
aux.uthread_align = 1;
if ( Page::Size() < aux.uthread_align )
return errno = EINVAL, -1;
if ( aux.uthread_size < sizeof(struct uthread) )
aux.uthread_size = sizeof(struct uthread);
size_t raw_tls_size = aux.tls_mem_size;
size_t raw_tls_size_aligned = -(-raw_tls_size & ~(aux.tls_mem_align-1));
if ( raw_tls_size && raw_tls_size_aligned == 0 /* overflow */ )
return errno = EINVAL, -1;
int raw_tls_kprot = PROT_KWRITE | PROT_FORK;
int raw_tls_prot = PROT_READ | PROT_KREAD | PROT_FORK;
void* raw_tls_hint = stack_hint;
size_t tls_size = raw_tls_size_aligned + aux.uthread_size;
size_t tls_offset_tls = 0;
size_t tls_offset_uthread = raw_tls_size_aligned;
if ( aux.tls_mem_align < aux.uthread_align )
{
size_t more_aligned = -(-raw_tls_size_aligned & ~(aux.uthread_align-1));
if ( raw_tls_size_aligned && more_aligned == 0 /* overflow */ )
return errno = EINVAL, -1;
size_t difference = more_aligned - raw_tls_size_aligned;
tls_size += difference;
tls_offset_tls += difference;
tls_offset_uthread += difference;
}
assert((tls_offset_tls & (aux.tls_mem_align-1)) == 0);
assert((tls_offset_uthread & (aux.uthread_align-1)) == 0);
int tls_prot = PROT_READ | PROT_WRITE | PROT_KREAD | PROT_KWRITE | PROT_FORK;
void* tls_hint = stack_hint;
size_t auxcode_size = Page::Size();
int auxcode_kprot = PROT_KWRITE | PROT_FORK;
int auxcode_prot = PROT_EXEC | PROT_READ | PROT_KREAD | PROT_FORK;
void* auxcode_hint = stack_hint;
size_t arg_size = 0;
size_t argv_size = sizeof(char*) * (argc + 1);
size_t envp_size = sizeof(char*) * (envc + 1);
arg_size += argv_size;
arg_size += envp_size;
for ( int i = 0; i < argc; i++ )
arg_size += strlen(argv[i]) + 1;
for ( int i = 0; i < envc; i++ )
arg_size += strlen(envp[i]) + 1;
struct segment arg_segment;
struct segment stack_segment;
struct segment raw_tls_segment;
struct segment tls_segment;
struct segment auxcode_segment;
kthread_mutex_lock(&segment_write_lock);
kthread_mutex_lock(&segment_lock);
if ( !(MapSegment(&arg_segment, stack_hint, arg_size, 0, stack_prot) &&
MapSegment(&stack_segment, stack_hint, stack_size, 0, stack_prot) &&
MapSegment(&raw_tls_segment, raw_tls_hint, raw_tls_size, 0, raw_tls_kprot) &&
MapSegment(&tls_segment, tls_hint, tls_size, 0, tls_prot) &&
MapSegment(&auxcode_segment, auxcode_hint, auxcode_size, 0, auxcode_kprot)) )
{
kthread_mutex_unlock(&segment_lock);
kthread_mutex_unlock(&segment_write_lock);
ResetForExecute();
return errno = ENOMEM, -1;
}
char** target_argv = (char**) ((char*) arg_segment.addr + 0);
char** target_envp = (char**) ((char*) arg_segment.addr + argv_size);
char* target_strings = (char*) ((char*) arg_segment.addr + argv_size + envp_size);
size_t target_strings_offset = 0;
for ( int i = 0; i < argc; i++ )
{
const char* arg = argv[i];
size_t arg_len = strlen(arg);
char* target_arg = target_strings + target_strings_offset;
strcpy(target_arg, arg);
target_argv[i] = target_arg;
target_strings_offset += arg_len + 1;
}
target_argv[argc] = (char*) NULL;
for ( int i = 0; i < envc; i++ )
{
const char* env = envp[i];
size_t env_len = strlen(env);
char* target_env = target_strings + target_strings_offset;
strcpy(target_env, env);
target_envp[i] = target_env;
target_strings_offset += env_len + 1;
}
target_envp[envc] = (char*) NULL;
const uint8_t* file_raw_tls = program + aux.tls_file_offset;
uint8_t* target_raw_tls = (uint8_t*) raw_tls_segment.addr;
memcpy(target_raw_tls, file_raw_tls, aux.tls_file_size);
memset(target_raw_tls + aux.tls_file_size, 0, aux.tls_mem_size - aux.tls_file_size);
Memory::ProtectMemory(this, raw_tls_segment.addr, raw_tls_segment.size, raw_tls_prot);
uint8_t* target_tls = (uint8_t*) (tls_segment.addr + tls_offset_tls);
assert((((uintptr_t) target_tls) & (aux.tls_mem_align-1)) == 0);
memcpy(target_tls, file_raw_tls, aux.tls_file_size);
memset(target_tls + aux.tls_file_size, 0, aux.tls_mem_size - aux.tls_file_size);
struct uthread* uthread = (struct uthread*) (tls_segment.addr + tls_offset_uthread);
assert((((uintptr_t) uthread) & (aux.uthread_align-1)) == 0);
memset(uthread, 0, sizeof(*uthread));
uthread->uthread_pointer = uthread;
uthread->uthread_size = aux.uthread_size;
uthread->uthread_flags = UTHREAD_FLAG_INITIAL;
uthread->tls_master_mmap = (void*) raw_tls_segment.addr;
uthread->tls_master_size = aux.tls_mem_size;
uthread->tls_master_align = aux.tls_mem_align;
uthread->tls_mmap = (void*) tls_segment.addr;
uthread->tls_size = tls_size;
uthread->stack_mmap = (void*) stack_segment.addr;
uthread->stack_size = stack_segment.size;
uthread->arg_mmap = (void*) arg_segment.addr;
uthread->arg_size = arg_segment.size;
memset(uthread + 1, 0, aux.uthread_size - sizeof(struct uthread));
memset(regs, 0, sizeof(*regs));
#if defined(__i386__)
regs->eax = argc;
regs->ebx = (size_t) target_argv;
regs->edx = envc;
regs->ecx = (size_t) target_envp;
regs->eip = entry;
regs->esp = (stack_segment.addr + stack_segment.size) & ~15UL;
regs->ebp = regs->esp;
regs->cs = UCS | URPL;
regs->ds = UDS | URPL;
regs->ss = UDS | URPL;
regs->eflags = FLAGS_RESERVED1 | FLAGS_INTERRUPT | FLAGS_ID;
regs->signal_pending = 0;
regs->gsbase = (uint32_t) uthread;
regs->cr3 = addrspace;
regs->kernel_stack = GDT::GetKernelStack();
memcpy(regs->fpuenv, Float::fpu_initialized_regs, 512);
#elif defined(__x86_64__)
regs->rdi = argc;
regs->rsi = (size_t) target_argv;
regs->rdx = envc;
regs->rcx = (size_t) target_envp;
regs->rip = entry;
regs->rsp = (stack_segment.addr + stack_segment.size) & ~15UL;
regs->rbp = regs->rsp;
regs->cs = UCS | URPL;
regs->ds = UDS | URPL;
regs->ss = UDS | URPL;
regs->rflags = FLAGS_RESERVED1 | FLAGS_INTERRUPT | FLAGS_ID;
regs->signal_pending = 0;
regs->fsbase = (uint64_t) uthread;
regs->cr3 = addrspace;
regs->kernel_stack = GDT::GetKernelStack();
memcpy(regs->fpuenv, Float::fpu_initialized_regs, 512);
#else
#warning "You need to implement initializing the first thread after execute"
#endif
uint8_t* auxcode = (uint8_t*) auxcode_segment.addr;
#if defined(__i386__)
sigreturn = (void (*)(void)) &auxcode[0];
auxcode[0] = 0xCD; /* int .... */
auxcode[1] = 0x83; /* ... $131 */
#elif defined(__x86_64__)
sigreturn = (void (*)(void)) &auxcode[0];
auxcode[0] = 0xCD; /* int .... */
auxcode[1] = 0x83; /* ... $131 */
#else
(void) auxcode;
#warning "You need to initialize auxcode with a sigreturn routine"
#endif
Memory::ProtectMemory(this, auxcode_segment.addr, auxcode_segment.size, auxcode_prot);
kthread_mutex_unlock(&segment_lock);
kthread_mutex_unlock(&segment_write_lock);
dtable->OnExecute();
return 0;
}
static
const char* shebang_lookup_environment(const char* name, char* const* envp)
{
size_t equalpos = strcspn(name, "=");
if ( name[equalpos] == '=' )
return NULL;
size_t namelen = equalpos;
for ( size_t i = 0; envp[i]; i++ )
{
if ( strncmp(name, envp[i], namelen) )
continue;
if ( envp[i][namelen] != '=' )
continue;
return envp[i] + namelen + 1;
}
return NULL;
}
static char* shebang_tokenize(char** saved)
{
char* data = *saved;
if ( !data )
return *saved = NULL;
while ( data[0] && isspace((unsigned char) data[0]) )
data++;
if ( !data[0] )
return *saved = NULL;
size_t input = 0;
size_t output = 0;
bool singly = false;
bool doubly = false;
bool escaped = false;
for ( ; data[input]; input++ )
{
char c = data[input];
if ( !escaped && !singly && !doubly && isspace((unsigned char) c) )
break;
if ( !escaped && !doubly && c == '\'' )
{
singly = !singly;
continue;
}
if ( !escaped && !singly && c == '"' )
{
doubly = !doubly;
continue;
}
if ( !singly && !escaped && c == '\\' )
{
escaped = true;
continue;
}
if ( escaped )
{
switch ( c )
{
case 'a': c = '\a'; break;
case 'b': c = '\b'; break;
case 'e': c = '\e'; break;
case 'f': c = '\f'; break;
case 'n': c = '\n'; break;
case 'r': c = '\r'; break;
case 't': c = '\t'; break;
case 'v': c = '\v'; break;
default: break;
};
}
escaped = false;
data[output++] = c;
}
if ( data[input] )
*saved = data + input + 1;
else
*saved = NULL;
data[output] = '\0';
return data;
}
static size_t shebang_count_arguments(char* line)
{
size_t result = 0;
while ( shebang_tokenize(&line) )
result++;
return result;
}
// NOTE: The PATH-searching logic is repeated multiple places. Until this logic
// can be shared somehow, you need to keep this comment in sync as well
// as the logic in these files:
// * kernel/process.cpp
// * libc/unistd/execvpe.c
// * utils/which.c
// NOTE: See comments in execvpe() for algorithmic commentary.
static bool sys_execve_alloc(addralloc_t* alloc, size_t size)
{
if ( !AllocateKernelAddress(alloc, size) )
return false;
if ( !Memory::MapRange(alloc->from, alloc->size, PROT_KREAD | PROT_KWRITE, PAGE_USAGE_EXECUTE) )
return FreeKernelAddress(alloc), false;
Memory::Flush();
return true;
}
static void sys_execve_free(addralloc_t* alloc)
{
Memory::UnmapRange(alloc->from, alloc->size, PAGE_USAGE_EXECUTE);
Memory::Flush();
FreeKernelAddress(alloc);
}
static
int sys_execve_kernel(const char* filename,
int argc,
char* const* argv,
int envc,
char* const* envp,
struct thread_registers* regs)
{
Process* process = CurrentProcess();
ioctx_t ctx;
SetupKernelIOCtx(&ctx);
Ref<Descriptor> from = filename[0] == '/' ? process->GetRoot() : process->GetCWD();
Ref<Descriptor> desc = from->open(&ctx, filename, O_EXEC | O_READ, 0);
if ( !desc )
return -1;
from.Reset();
struct stat st;
if ( desc->stat(&ctx, &st) )
return -1;
if ( !(st.st_mode & 0111) )
return errno = EACCES, -1;
if ( st.st_size < 0 )
return errno = EINVAL, -1;
if ( (uintmax_t) SIZE_MAX < (uintmax_t) st.st_size )
return errno = EFBIG, -1;
size_t filesize = (size_t) st.st_size;
addralloc_t buffer_alloc;
if ( !sys_execve_alloc(&buffer_alloc, filesize) )
return -1;
uint8_t* buffer = (uint8_t*) buffer_alloc.from;
for ( size_t sofar = 0; sofar < filesize; )
{
ssize_t amount = desc->read(&ctx, buffer + sofar, filesize - sofar);
if ( amount < 0 )
return sys_execve_free(&buffer_alloc), -1;
if ( amount == 0 )
return sys_execve_free(&buffer_alloc), errno = EEOF, -1;
sofar += amount;
}
desc.Reset();
int result = process->Execute(filename, buffer, filesize, argc, argv, envc, envp, regs);
if ( result == 0 || errno != ENOEXEC ||
filesize < 2 || buffer[0] != '#' || buffer[1] != '!' )
return sys_execve_free(&buffer_alloc), result;
size_t line_length = 0;
while ( 2 + line_length < filesize && buffer[2 + line_length] != '\n' )
line_length++;
if ( line_length == filesize )
return sys_execve_free(&buffer_alloc), errno = ENOEXEC, -1;
char* line = new char[line_length+1];
if ( !line )
return sys_execve_free(&buffer_alloc), -1;
memcpy(line, buffer + 2, line_length);
line[line_length] = '\0';
sys_execve_free(&buffer_alloc);
char* line_clone = String::Clone(line);
if ( !line_clone )
return delete[] line, -1;
size_t argument_count = shebang_count_arguments(line_clone);
delete[] line_clone;
if ( !argument_count || INT_MAX < argument_count )
return delete[] line, errno = ENOEXEC, -1;
int sb_argc = (int) argument_count;
char** sb_argv = new char*[sb_argc];
if ( !sb_argv )
return delete[] line, -1;
char* sb_saved = line;
for ( int i = 0; i < sb_argc; i++ )
sb_argv[i] = shebang_tokenize(&sb_saved);
if ( INT_MAX - argc <= sb_argc )
return delete[] sb_argv, delete[] line, errno = EOVERFLOW, -1;
if ( !sb_argv[0] || !sb_argv[0][0] )
return delete[] sb_argv, delete[] line, errno = ENOENT, -1;
int new_argc = sb_argc + argc;
char** new_argv = new char*[new_argc + 1];
if ( !new_argv )
return delete[] sb_argv, delete[] line, -1;
for ( int i = 0; i < sb_argc; i++ )
new_argv[i] = sb_argv[i];
new_argv[sb_argc + 0] = (char*) filename;
for ( int i = 1; i < argc; i++ )
new_argv[sb_argc + i] = argv[i];
new_argv[new_argc] = (char*) NULL;
result = -1;
// (See the above comment block before editing this searching logic)
const char* path = shebang_lookup_environment("PATH", envp);
bool search_path = !strchr(sb_argv[0], '/') && path;
bool any_tries = false;
bool any_eacces = false;
const char* new_argv0 = sb_argv[0];
while ( search_path && *path )
{
size_t len = strcspn(path, ":");
if ( !len )
{
path++;
continue;
}
any_tries = true;
char* dirpath = strndup(path, len);
if ( !dirpath )
return -1;
if ( (path += len)[0] == ':' )
path++;
while ( len && dirpath[len - 1] == '/' )
dirpath[--len] = '\0';
char* fullpath;
if ( asprintf(&fullpath, "%s/%s", dirpath, sb_argv[0]) < 0 )
return free(dirpath), -1;
result = sys_execve_kernel(fullpath, new_argc, new_argv, envc, envp, regs);
free(fullpath);
free(dirpath);
if ( result == 0 )
break;
if ( errno == ENOENT )
continue;
if ( errno == ELOOP ||
errno == EISDIR ||
errno == ENAMETOOLONG ||
errno == ENOTDIR )
continue;
if ( errno == EACCES )
{
any_eacces = true;
continue;
}
if ( errno == EACCES )
{
any_eacces = true;
continue;
}
break;
}
if ( !any_tries )
result = sys_execve_kernel(new_argv0, new_argc, new_argv, envc, envp, regs);
if ( result < 0 && any_eacces )
errno = EACCES;
delete[] new_argv;
delete[] sb_argv;
delete[] line;
return result;
}
int sys_execve(const char* user_filename,
char* const* user_argv,
char* const* user_envp)
{
char* filename;
int argc;
int envc;
char** argv;
char** envp;
int result = -1;
struct thread_registers regs;
memset(&regs, 0, sizeof(regs));
if ( !user_filename || !user_argv || !user_envp )
return errno = EFAULT, -1;
if ( !(filename = GetStringFromUser(user_filename)) )
goto cleanup_done;
argc = 0;
while ( true )
{
const char* user_arg;
if ( !CopyFromUser(&user_arg, user_argv + argc, sizeof(user_arg)) )
goto cleanup_filename;
if ( !user_arg )
break;
if ( ++argc == INT_MAX )
{
errno = E2BIG;
goto cleanup_filename;
}
}
argv = new char*[argc+1];
if ( !argv )
goto cleanup_filename;
memset(argv, 0, sizeof(char*) * (argc+1));
for ( int i = 0; i < argc; i++ )
{
const char* user_arg;
if ( !CopyFromUser(&user_arg, user_argv + i, sizeof(user_arg)) )
goto cleanup_argv;
if ( !(argv[i] = GetStringFromUser(user_arg)) )
goto cleanup_argv;
}
envc = 0;
while ( true )
{
const char* user_env;
if ( !CopyFromUser(&user_env, user_envp + envc, sizeof(user_env)) )
goto cleanup_argv;
if ( !user_env )
break;
if ( ++envc == INT_MAX )
{
errno = E2BIG;
goto cleanup_argv;
}
}
envp = new char*[envc+1];
if ( !envp )
goto cleanup_argv;
memset(envp, 0, sizeof(char*) * (envc+1));
for ( int i = 0; i < envc; i++ )
{
const char* user_env;
if ( !CopyFromUser(&user_env, user_envp + i, sizeof(user_env)) )
goto cleanup_envp;
if ( !(envp[i] = GetStringFromUser(user_envp[i])) )
goto cleanup_envp;
}
result = sys_execve_kernel(filename, argc, argv, envc, envp, &regs);
cleanup_envp:
for ( int i = 0; i < envc; i++)
delete[] envp[i];
delete[] envp;
cleanup_argv:
for ( int i = 0; i < argc; i++)
delete[] argv[i];
delete[] argv;
cleanup_filename:
delete[] filename;
cleanup_done:
if ( result == 0 )
LoadRegisters(&regs);
return result;
}
pid_t sys_tfork(int flags, struct tfork* user_regs)
{
struct tfork regs;
if ( !CopyFromUser(&regs, user_regs, sizeof(regs)) )
return -1;
if ( Signal::IsPending() )
return errno = EINTR, -1;
bool making_process = flags == SFFORK;
bool making_thread = (flags & (SFPROC | SFPID | SFFD | SFMEM | SFCWD | SFROOT)) == SFPROC;
// TODO: Properly support tfork(2).
if ( !(making_thread || making_process) )
return errno = ENOSYS, -1;
if ( regs.altstack.ss_flags & ~__SS_SUPPORTED_FLAGS )
return errno = EINVAL, -1;
size_t stack_alignment = 16;
// TODO: Is it a hack to create a new kernel stack here?
Thread* curthread = CurrentThread();
size_t newkernelstacksize = curthread->kernelstacksize;
uint8_t* newkernelstack = new uint8_t[newkernelstacksize + stack_alignment];
if ( !newkernelstack )
return -1;
uintptr_t stack_aligned = (uintptr_t) newkernelstack;
size_t stack_aligned_size = newkernelstacksize;
if ( ((uintptr_t) stack_aligned) & (stack_alignment-1) )
stack_aligned = (stack_aligned + 16) & ~(stack_alignment-1);
stack_aligned_size &= 0xFFFFFFF0;
Process* child_process;
if ( making_thread )
child_process = CurrentProcess();
else if ( !(child_process = CurrentProcess()->Fork()) )
{
delete[] newkernelstack;
return -1;
}
struct thread_registers cpuregs;
memset(&cpuregs, 0, sizeof(cpuregs));
#if defined(__i386__)
cpuregs.eip = regs.eip;
cpuregs.esp = regs.esp;
cpuregs.eax = regs.eax;
cpuregs.ebx = regs.ebx;
cpuregs.ecx = regs.ecx;
cpuregs.edx = regs.edx;
cpuregs.edi = regs.edi;
cpuregs.esi = regs.esi;
cpuregs.ebp = regs.ebp;
cpuregs.cs = UCS | URPL;
cpuregs.ds = UDS | URPL;
cpuregs.ss = UDS | URPL;
cpuregs.eflags = FLAGS_RESERVED1 | FLAGS_INTERRUPT | FLAGS_ID;
cpuregs.fsbase = regs.fsbase;
cpuregs.gsbase = regs.gsbase;
cpuregs.cr3 = child_process->addrspace;
cpuregs.kernel_stack = stack_aligned + stack_aligned_size;
memcpy(&cpuregs.fpuenv, Float::fpu_initialized_regs, 512);
#elif defined(__x86_64__)
cpuregs.rip = regs.rip;
cpuregs.rsp = regs.rsp;
cpuregs.rax = regs.rax;
cpuregs.rbx = regs.rbx;
cpuregs.rcx = regs.rcx;
cpuregs.rdx = regs.rdx;
cpuregs.rdi = regs.rdi;
cpuregs.rsi = regs.rsi;
cpuregs.rbp = regs.rbp;
cpuregs.r8 = regs.r8;
cpuregs.r9 = regs.r9;
cpuregs.r10 = regs.r10;
cpuregs.r11 = regs.r11;
cpuregs.r12 = regs.r12;
cpuregs.r13 = regs.r13;
cpuregs.r14 = regs.r14;
cpuregs.r15 = regs.r15;
cpuregs.cs = UCS | URPL;
cpuregs.ds = UDS | URPL;
cpuregs.ss = UDS | URPL;
cpuregs.rflags = FLAGS_RESERVED1 | FLAGS_INTERRUPT | FLAGS_ID;
cpuregs.fsbase = regs.fsbase;
cpuregs.gsbase = regs.gsbase;
cpuregs.cr3 = child_process->addrspace;
cpuregs.kernel_stack = stack_aligned + stack_aligned_size;
memcpy(&cpuregs.fpuenv, Float::fpu_initialized_regs, 512);
#else
#warning "You need to implement initializing the registers of the new thread"
#endif
// If the thread could not be created, make the process commit suicide
// in a manner such that we don't wait for its zombie.
Thread* thread = CreateKernelThread(child_process, &cpuregs);
if ( !thread )
{
if ( making_process )
child_process->AbortConstruction();
return -1;
}
thread->kernelstackpos = (addr_t) newkernelstack;
thread->kernelstacksize = newkernelstacksize;
thread->kernelstackmalloced = true;
memcpy(&thread->signal_mask, &regs.sigmask, sizeof(sigset_t));
memcpy(&thread->signal_stack, &regs.altstack, sizeof(stack_t));
StartKernelThread(thread);
return child_process->pid;
}
pid_t sys_getpid(void)
{
return CurrentProcess()->pid;
}
pid_t Process::GetParentProcessId()
{
ScopedLock lock(&parentlock);
if( !parent )
return 0;
return parent->pid;
}
pid_t sys_getppid(void)
{
return CurrentProcess()->GetParentProcessId();
}
pid_t sys_getpgid(pid_t pid)
{
Process* process = !pid ? CurrentProcess() : CurrentProcess()->GetPTable()->Get(pid);
if ( !process )
return errno = ESRCH, -1;
// Prevent the process group from changing while we read it.
ScopedLock childlock(&process->groupchildlock);
assert(process->group);
return process->group->pid;
}
int sys_setpgid(pid_t pid, pid_t pgid)
{
// TODO: Prevent changing the process group of zombies and other volatile
// things that are about to implode.
// TODO: Either prevent changing the process group after an exec or provide
// a version of this system call with a flags parameter that lets you
// decide if you want this behavior. This will fix a race condition
// where the shell spawns a child and both parent and child sets the
// process group, but the child sets the process group and execve's
// and the new program image exploits this 'bug' and also changes the
// process group, and then the shell gets around to change the process
// group. This probably unlikely, but correctness over all!
// Find the processes in question.
Process* process = !pid ? CurrentProcess() : CurrentProcess()->GetPTable()->Get(pid);
if ( !process )
return errno = ESRCH, -1;
Process* group = !pgid ? process : CurrentProcess()->GetPTable()->Get(pgid);
if ( !group )
return errno = ESRCH, -1;
// Prevent the current group from being changed while we also change it
ScopedLock childlock(&process->groupchildlock);
assert(process->group);
// Exit early if this is a noop.
if ( process->group == group )
return 0;
// Prevent changing the process group of a process group leader.
if ( process->group == process )
return errno = EPERM, -1;
// Remove the process from its current process group.
kthread_mutex_lock(&process->group->groupparentlock);
if ( process->groupprev )
process->groupprev->groupnext = process->groupnext;
else
process->group->groupfirst = process->groupnext;
if ( process->groupnext )
process->groupnext->groupprev = process->groupprev;
kthread_cond_signal(&process->group->groupchildleft);
kthread_mutex_unlock(&process->group->groupparentlock);
process->group->NotifyLeftProcessGroup();
process->group = NULL;
// TODO: Somehow prevent joining a zombie group, or worse yet, one that is
// currently being deleted by its parent!
// Insert the process into its new process group.
kthread_mutex_lock(&group->groupparentlock);
process->groupprev = NULL;
process->groupnext = group->groupfirst;
if ( group->groupfirst )
group->groupfirst->groupprev = process;
group->groupfirst = process;
process->group = group;
kthread_mutex_unlock(&group->groupparentlock);
return 0;
}
size_t sys_getpagesize(void)
{
return Page::Size();
}
mode_t sys_umask(mode_t newmask)
{
Process* process = CurrentProcess();
ScopedLock lock(&process->idlock);
mode_t oldmask = process->umask;
process->umask = newmask & 0666;
return oldmask;
}
mode_t sys_getumask(void)
{
Process* process = CurrentProcess();
ScopedLock lock(&process->idlock);
return process->umask;
}
static void GetAssertInfo(struct scram_assert* info,
const void* user_info_ptr)
{
memset(info, 0, sizeof(*info));
struct scram_assert user_info;
if ( !CopyFromUser(&user_info, user_info_ptr, sizeof(user_info)) )
return;
info->filename = GetStringFromUser(user_info.filename);
info->line = user_info.line;
info->function = GetStringFromUser(user_info.function);
info->expression = GetStringFromUser(user_info.expression);
}
static void FreeAssertInfo(struct scram_assert* info)
{
delete[] (char*) info->filename;
delete[] (char*) info->function;
delete[] (char*) info->expression;
}
static
void GetUndefinedBehaviorInfo(struct scram_undefined_behavior* info,
const void* user_info_ptr)
{
memset(info, 0, sizeof(*info));
struct scram_undefined_behavior user_info;
if ( !CopyFromUser(&user_info, user_info_ptr, sizeof(user_info)) )
return;
info->filename = GetStringFromUser(user_info.filename);
info->line = user_info.line;
info->column = user_info.column;
info->violation = GetStringFromUser(user_info.violation);
}
static void FreeUndefinedBehaviorInfo(struct scram_undefined_behavior* info)
{
delete[] info->filename;
delete[] info->violation;
}
__attribute__((noreturn))
void sys_scram(int event, const void* user_info)
{
Process* process = CurrentProcess();
// TODO: Prohibit execve such that program_image_path is protected.
process->ExitThroughSignal(SIGABRT);
if ( event == SCRAM_ASSERT )
{
struct scram_assert info;
GetAssertInfo(&info, user_info);
Log::PrintF("%s[%ji]: Assertion failure: %s:%lu: %s: %s\n",
process->program_image_path,
(intmax_t) process->pid,
info.filename ? info.filename : "<unknown>",
info.line,
info.function ? info.function : "<unknown>",
info.expression ? info.expression : "<unknown>");
FreeAssertInfo(&info);
}
else if ( event == SCRAM_STACK_SMASH )
{
Log::PrintF("%s[%ji]: Stack smashing detected\n",
process->program_image_path,
(intmax_t) process->pid);
}
else if ( event == SCRAM_UNDEFINED_BEHAVIOR )
{
struct scram_undefined_behavior info;
GetUndefinedBehaviorInfo(&info, user_info);
Log::PrintF("%s[%ji]: Undefined behavior: %s at %s:%lu:%lu\n",
process->program_image_path,
(intmax_t) process->pid,
info.violation ? info.violation : "<unknown>",
info.filename ? info.filename : "<unknown>",
info.line,
info.column);
FreeUndefinedBehaviorInfo(&info);
}
else
{
Log::PrintF("%s[%ji]: Unknown scram event %i\n",
process->program_image_path,
(intmax_t) process->pid,
event);
}
// TODO: Allow debugging this event (and see signal.cpp sigreturn).
kthread_exit();
}
} // namespace Sortix