sortix-mirror/kernel/pci.cpp
Jonas 'Sortie' Termansen 2b72262b4f Relicense Sortix to the ISC license.
I hereby relicense all my work on Sortix under the ISC license as below.

All Sortix contributions by other people are already under this license,
are not substantial enough to be copyrightable, or have been removed.

All imported code from other projects is compatible with this license.

All GPL licensed code from other projects had previously been removed.

Copyright 2011-2016 Jonas 'Sortie' Termansen and contributors.

Permission to use, copy, modify, and distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
2016-03-05 22:21:50 +01:00

288 lines
8.2 KiB
C++

/*
* Copyright (c) 2011, 2012, 2013, 2014 Jonas 'Sortie' Termansen.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* pci.cpp
* Functions for handling PCI devices.
*/
#include <assert.h>
#include <endian.h>
#include <sortix/kernel/cpu.h>
#include <sortix/kernel/ioport.h>
#include <sortix/kernel/kernel.h>
#include <sortix/kernel/kthread.h>
#include <sortix/kernel/pci.h>
namespace Sortix {
namespace PCI {
static kthread_mutex_t pci_lock = KTHREAD_MUTEX_INITIALIZER;
const uint16_t CONFIG_ADDRESS = 0xCF8;
const uint16_t CONFIG_DATA = 0xCFC;
uint32_t MakeDevAddr(uint8_t bus, uint8_t slot, uint8_t func)
{
//assert(bus < 1UL<<8UL); // bus is 8 bit anyways.
assert(slot < 1UL<<5UL);
assert(func < 1UL<<3UL);
return func << 8U | slot << 11U | bus << 16U | 1 << 31U;
}
void SplitDevAddr(uint32_t devaddr, uint8_t* vals /* bus, slot, func */)
{
vals[0] = devaddr >> 16U & ((1UL<<8UL)-1);
vals[1] = devaddr >> 11U & ((1UL<<3UL)-1);
vals[2] = devaddr >> 8U & ((1UL<<5UL)-1);
}
uint32_t ReadRaw32(uint32_t devaddr, uint8_t off)
{
assert((off & 0x3) == 0);
outport32(CONFIG_ADDRESS, devaddr + off);
return inport32(CONFIG_DATA);
}
void WriteRaw32(uint32_t devaddr, uint8_t off, uint32_t val)
{
assert((off & 0x3) == 0);
outport32(CONFIG_ADDRESS, devaddr + off);
outport32(CONFIG_DATA, val);
}
uint32_t Read32(uint32_t devaddr, uint8_t off)
{
return le32toh(ReadRaw32(devaddr, off));
}
void Write32(uint32_t devaddr, uint8_t off, uint32_t val)
{
WriteRaw32(devaddr, off, htole32(val));
}
void Write16(uint32_t devaddr, uint8_t off, uint16_t val)
{
assert((off & 0x1) == 0);
uint8_t alignedoff = off & ~0x3;
union { uint8_t val8[4]; uint32_t val32; };
val32 = ReadRaw32(devaddr, alignedoff);
val8[(off & 0x3) + 0] = val >> 0 & 0xFF;
val8[(off & 0x3) + 1] = val >> 8 & 0xFF;
WriteRaw32(devaddr, alignedoff, val32);
}
uint16_t Read16(uint32_t devaddr, uint8_t off)
{
assert((off & 0x1) == 0);
uint8_t alignedoff = off & ~0x3;
union { uint8_t val8[4]; uint32_t val32; };
val32 = ReadRaw32(devaddr, alignedoff);
return (uint16_t) val8[(off & 0x3) + 0] << 0 |
(uint16_t) val8[(off & 0x3) + 1] << 8;
}
void Write8(uint32_t devaddr, uint8_t off, uint8_t val)
{
uint8_t alignedoff = off & ~0x3;
union { uint8_t val8[4]; uint32_t val32; };
val32 = ReadRaw32(devaddr, alignedoff);
val8[(off & 0x3)] = val;
WriteRaw32(devaddr, alignedoff, val32);
}
uint8_t Read8(uint32_t devaddr, uint8_t off)
{
uint8_t alignedoff = off & ~0x3;
union { uint8_t val8[4]; uint32_t val32; };
val32 = ReadRaw32(devaddr, alignedoff);
return val8[(off & 0x3)];
}
uint32_t CheckDevice(uint8_t bus, uint8_t slot, uint8_t func)
{
return Read32(MakeDevAddr(bus, slot, func), 0x0);
}
pciid_t GetDeviceId(uint32_t devaddr)
{
pciid_t ret;
ret.deviceid = Read16(devaddr, PCIFIELD_DEVICE_ID);
ret.vendorid = Read16(devaddr, PCIFIELD_VENDOR_ID);
return ret;
}
pcitype_t GetDeviceType(uint32_t devaddr)
{
pcitype_t ret;
ret.classid = Read8(devaddr, PCIFIELD_CLASS);
ret.subclassid = Read8(devaddr, PCIFIELD_SUBCLASS);
ret.progif = Read8(devaddr, PCIFIELD_PROG_IF);
ret.revid = Read8(devaddr, PCIFIELD_REVISION_ID);
return ret;
}
static bool MatchesSearchCriteria(uint32_t devaddr, pcifind_t pcifind)
{
pciid_t id = GetDeviceId(devaddr);
if ( id.vendorid == 0xFFFF && id.deviceid == 0xFFFF )
return false;
pcitype_t type = GetDeviceType(devaddr);
if ( pcifind.vendorid != 0xFFFF && id.vendorid != pcifind.vendorid )
return false;
if ( pcifind.deviceid != 0xFFFF && id.deviceid != pcifind.deviceid )
return false;
if ( pcifind.classid != 0xFF && type.classid != pcifind.classid )
return false;
if ( pcifind.subclassid != 0xFF && type.subclassid != pcifind.subclassid )
return false;
if ( pcifind.progif != 0xFF && type.progif != pcifind.progif )
return false;
if ( pcifind.revid != 0xFF && type.revid != pcifind.revid )
return false;
return true;
}
// TODO: This iterates the whole PCI device tree on each call!
static uint32_t SearchForDevicesOnBus(uint8_t bus, pcifind_t pcifind, uint32_t last = 0)
{
bool found_any_device = false;
uint32_t next_device = 0;
for ( unsigned int slot = 0; slot < 32; slot++ )
{
unsigned int num_functions = 1;
for ( unsigned int function = 0; function < num_functions; function++ )
{
uint32_t devaddr = MakeDevAddr(bus, slot, function);
if ( last < devaddr &&
(!found_any_device || devaddr < next_device) &&
MatchesSearchCriteria(devaddr, pcifind) )
next_device = devaddr, found_any_device = true;
uint8_t header = Read8(devaddr, PCIFIELD_HEADER_TYPE);
if ( header & 0x80 ) // Multi function device.
num_functions = 8;
if ( (header & 0x7F) == 0x01 ) // PCI to PCI bus.
{
uint8_t subbusid = Read8(devaddr, PCIFIELD_SECONDARY_BUS_NUMBER);
uint32_t recret = SearchForDevicesOnBus(subbusid, pcifind, last);
if ( last < recret &&
(!found_any_device || recret < next_device) )
next_device = recret, found_any_device = true;
}
}
}
if ( !found_any_device )
return 0;
return next_device;
}
uint32_t SearchForDevices(pcifind_t pcifind, uint32_t last)
{
// Search on bus 0 and recurse on other detected busses.
return SearchForDevicesOnBus(0, pcifind, last);
}
pcibar_t GetBAR(uint32_t devaddr, uint8_t bar)
{
ScopedLock lock(&pci_lock);
uint32_t low = PCI::Read32(devaddr, 0x10 + 4 * (bar+0));
pcibar_t result;
result.addr_raw = low;
result.size_raw = 0;
if ( result.is_64bit() )
{
uint32_t high = PCI::Read32(devaddr, 0x10 + 4 * (bar+1));
result.addr_raw |= (uint64_t) high << 32;
PCI::Write32(devaddr, 0x10 + 4 * (bar+0), 0xFFFFFFFF);
PCI::Write32(devaddr, 0x10 + 4 * (bar+1), 0xFFFFFFFF);
uint32_t size_low = PCI::Read32(devaddr, 0x10 + 4 * (bar+0));
uint32_t size_high = PCI::Read32(devaddr, 0x10 + 4 * (bar+1));
PCI::Write32(devaddr, 0x10 + 4 * (bar+0), low);
PCI::Write32(devaddr, 0x10 + 4 * (bar+1), high);
result.size_raw = (uint64_t) size_high << 32 | (uint64_t) size_low << 0;
result.size_raw = ~(result.size_raw & 0xFFFFFFFFFFFFFFF0) + 1;
}
else if ( result.is_32bit() )
{
PCI::Write32(devaddr, 0x10 + 4 * (bar+0), 0xFFFFFFFF);
uint32_t size_low = PCI::Read32(devaddr, 0x10 + 4 * (bar+0));
PCI::Write32(devaddr, 0x10 + 4 * (bar+0), low);
result.size_raw = (uint64_t) size_low << 0;
result.size_raw = ~(result.size_raw & 0xFFFFFFF0) + 1;
result.size_raw &= 0xFFFFFFFF;
}
else if ( result.is_iospace() )
{
PCI::Write32(devaddr, 0x10 + 4 * (bar+0), 0xFFFFFFFF);
uint32_t size_low = PCI::Read32(devaddr, 0x10 + 4 * (bar+0));
PCI::Write32(devaddr, 0x10 + 4 * (bar+0), low);
result.size_raw = (uint64_t) size_low << 0;
result.size_raw = ~(result.size_raw & 0xFFFFFFFC) + 1;
result.size_raw &= 0xFFFFFFFF;
}
return result;
}
pcibar_t GetExpansionROM(uint32_t devaddr)
{
const uint32_t ROM_ADDRESS_MASK = ~UINT32_C(0x7FF);
ScopedLock lock(&pci_lock);
uint32_t low = PCI::Read32(devaddr, 0x30);
PCI::Write32(devaddr, 0x30, ROM_ADDRESS_MASK | low);
uint32_t size_low = PCI::Read32(devaddr, 0x30);
PCI::Write32(devaddr, 0x30, low);
pcibar_t result;
result.addr_raw = (low & ROM_ADDRESS_MASK) | PCIBAR_TYPE_32BIT;
result.size_raw = ~(size_low & ROM_ADDRESS_MASK) + 1;
return result;
}
void EnableExpansionROM(uint32_t devaddr)
{
ScopedLock lock(&pci_lock);
PCI::Write32(devaddr, 0x30, PCI::Read32(devaddr, 0x30) | 0x1);
}
void DisableExpansionROM(uint32_t devaddr)
{
ScopedLock lock(&pci_lock);
PCI::Write32(devaddr, 0x30, PCI::Read32(devaddr, 0x30) & ~UINT32_C(0x1));
}
bool IsExpansionROMEnabled(uint32_t devaddr)
{
ScopedLock lock(&pci_lock);
return PCI::Read32(devaddr, 0x30) & 0x1;
}
void Init()
{
}
} // namespace PCI
} // namespace Sortix